Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Chem Sci ; 15(11): 3879-3892, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487227

RESUMEN

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.

2.
Chemistry ; 29(5): e202203431, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36468686

RESUMEN

Maytansinoids are a successful class of natural and semisynthetic tubulin binders, known for their potent cytotoxic activity. Their wider application as cytotoxins and chemical probes to study tubulin dynamics has been held back by the complexity of natural product chemistry. Here we report the synthesis of long-chain derivatives and maytansinoid conjugates. We confirmed that bulky substituents do not impact their high activity or the scaffold's binding mode. These encouraging results open new avenues for the design of new maytansine-based probes.


Asunto(s)
Antineoplásicos , Maitansina , Tubulina (Proteína)/metabolismo , Antineoplásicos/metabolismo , Microtúbulos
3.
Chemistry ; 28(2): e202103520, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34788896

RESUMEN

Maytansinol is a valuable precursor for the preparation of maytansine derivatives (known as maytansinoids). Inspired by the intriguing structure of the macrocycle and the success in targeted cancer therapy of the derivatives, we explored the maytansinol acylation reaction. As a result, we were able to obtain a series of derivatives with novel modifications of the maytansine scaffold. We characterized these molecules by docking studies, by a comprehensive biochemical evaluation, and by determination of their crystal structures in complex with tubulin. The results shed further light on the intriguing chemical behavior of maytansinoids and confirm the relevance of this peculiar scaffold in the scenario of tubulin binders.


Asunto(s)
Maitansina , Neoplasias , Humanos , Maitansina/análogos & derivados , Microtúbulos , Tubulina (Proteína) , Moduladores de Tubulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA