Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(6): e0305688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917096

RESUMEN

Increases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants. We used a meta-analysis approach based on 31 studies 343 observations) to examine the effects of elevated O3 on malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) activities in herbaceous plants. Globally, important as they constitute the majority of the world's food crops. We partitioned the variation in effect size found in the meta-analysis according to the presence of plant species (ornamental herb, rice, and wheat), O3 concentration, and duration of O3 stress in plants. Our results showed that the effects of elevated O3 on plant membrane lipid peroxidation depending on plant species, O3 concentration, and duration of O3 stress in plants. The wheat SOD and POD activity was significantly lower compared to the herbs and rice (P<0.01). The SOD activity of all herbaceous plants increased by 34.6%, 10.5%, and 26.3% for exposure times to elevated O3 environments of 1-12, 13-30, and 31-60 days, respectively. When the exposure time was more than 60 days, SOD activity did not increase but significantly decreased by 12.1%. However, the POD activity of herbaceous plants increased by 30.4%, 57.3%, 21.9% and 5.81%, respectively, when exposure time of herbaceous plants in elevated O3 environment was 1-12, 13-30, 31-60 and more than 60 days. Our meta-analysis revealed that (1) rice is more resistant to elevated O3 than wheat and ornamental herbs likely because of the higher activity of antioxidant components (e.g., POD) in the symplasts, (2) exposure to elevated O3 concentrations for >60 days, may result in antioxidant SOD lose its regulatory ability, and the antioxidant component POD in the symplast is mainly used to resist O3 damage, and (3) the important factors affected the activity of SOD and POD in plants were not consistent: the duration of O3 stress in plants was more important than plant species and O3 concentration for SOD activity. However, for POD activity, plant species was the most important factor.


Asunto(s)
Antioxidantes , Ozono , Superóxido Dismutasa , Superóxido Dismutasa/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Peroxidación de Lípido , Plantas/metabolismo , Estrés Oxidativo , Oxidorreductasas/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Peroxidasa/metabolismo
2.
Front Plant Sci ; 13: 1080014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36600925

RESUMEN

Introduction: Soybean adapts to phosphorus-deficient soils through three important phosphorus acquisition strategies, namely altered root conformation, exudation of carboxylic acids, and symbiosis with clumping mycorrhizal fungi. However, the trade-offs and regulatory mechanisms of these three phosphorus acquisition strategies in soybean have not been researched. Methods: In this study, we investigated the responses of ten different soybean varieties to low soil phosphorus availability by determining biomass, phosphorus accumulation, root morphology, exudation, and mycorrhizal colonization rate. Furthermore, the molecular regulatory mechanisms underlying root phosphorus acquisition strategies were examined among varieties with different low-phosphorus tolerance using transcriptome sequencing and weighted gene co-expression network analysis. Results and discussion: The results showed that two types of phosphorus acquisition strategies-"outsourcing" and "do-it-yourself"-were employed by soybean varieties under low phosphorus availability. The "do-it-yourself" varieties, represented by QD11, Zh30, and Sd, obtained sufficient phosphorus by increasing their root surface area and secreting carboxylic acids. In contrast, the "outsourcing" varieties, represented by Zh301, Zh13, and Hc6, used increased symbiosis with mycorrhizae to obtain phosphorus owing to their large root diameters. Transcriptome analysis showed that the direction of acetyl-CoA metabolism could be the dividing line between the two strategies of soybean selection. ERF1 and WRKY1 may be involved in the regulation of phosphorus acquisition strategies for soybeans grown under low P environments. These findings will enhance our understanding of phosphorus acquisition strategies in soybeans. In addition, they will facilitate the development of breeding strategies that are more flexible to accommodate a variety of production scenarios in agriculture under low phosphorus environments. Background: Association of gastric atrophy or cancer with levels of serum pepsinogens, gastrin-17 and anti-Helicobacter pylori IgG antibody have been extensively studied. However, the association of serum pepsinogen and gastrin-17 with H. pylori infection has not been studied in a large population.

3.
PLoS One ; 16(10): e0259205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34705877

RESUMEN

Phenolic compounds are chemical precursor building blocks of soil organic matter. Their occurrence can be inhibitory to certain enzymes present in soil, thereby influencing the rate of decomposition of soil organic matter. Microbe-derived phenoloxidases (laccases) are extracellular enzymes capable of degrading recalcitrant polyphenolic compounds. In this study, our aim was to investigate the relationships between phenoloxidase enzyme activity, organic carbon content and microbial abundance in the context of long-term anthropogenically amended soils. To achieve this, we used a series of complementary biochemical analytical methods including gas chromatography, enzyme assays and solid-state Carbon-13 Cross Polarisation Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy (13C CPMAS NMR). Using several anthrosols found in St Andrews (Scotland, UK) that had been subjected to intense anthropogenic modification since the medieval period (11th century AD) to present-day, we were able to scope the impact of past waste disposal on soils. The long-term anthropogenic impact led to organic matter-rich soils. Overall, phenoloxidase activity increased by up to 2-fold with soil depth (up to 100 cm) and was inversely correlated with microbial biomass. Solid-state 13C NMR characterisation of carbon species revealed that the observed decline in soil organic matter with depth corresponded to decreases in the labile organic carbon fractions as evidenced by changes in the O/N-alkyl C region of the spectra. The increase in phenoloxidase activity with depth would appear to be a compensatory mechanism for the reduced quantities of organic carbon and lower overall nutrient environment in subsoils. By enzymatically targeting phenolic compounds, microbes can better utilise recalcitrant carbon when other labile soil carbon sources become limited, thereby maintaining metabolic processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Monofenol Monooxigenasa/metabolismo , Polifenoles/análisis , Microbiología del Suelo , Suelo/química , Carbono/análisis , Carbono/metabolismo , Lacasa/metabolismo , Microbiota , Polifenoles/metabolismo
4.
J Environ Qual ; 46(5): 1114-1122, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28991980

RESUMEN

Knowledge about environmental impacts associated with the application of anaerobic digestion residue to agricultural land is of interest owing to the rapid proliferation of biogas plants worldwide. However, virtually no information exists concerning how soil-emitted NO is affected by the feedstock hydraulic retention time (HRT) in the biogas digester. Here, the O planar optode technique was used to visualize soil O dynamics following the surface application of digestates of the codigestion of pig slurry and agro-industrial waste. We also used NO isotopomer analysis of soil-emitted NO to determine the NO production pathways, i.e., nitrification or denitrification. Two-dimensional images of soil O indicated that anoxic and hypoxic conditions developed at 2.0- and 1.5-cm soil depth for soil amended with the digestate produced with 15-d (PO15) and 30-d (PO30) retention time, respectively. Total NO emissions were significantly lower for PO15 than PO30 due to the greater expansion of the anoxic zone, which enhanced NO reduction via complete denitrification. However, cumulative CO emissions were not significantly different between PO15 and PO30 for the entire incubation period. During incubation, NO emissions came from both nitrification and denitrification in amended soils. Increasing the HRT of the biogas digester appears to induce significant NO emissions, but it is unlikely to affect the NO production pathways after application to soil.


Asunto(s)
Gases de Efecto Invernadero , Consumo de Oxígeno , Suelo/química , Residuos Sólidos , Agricultura , Animales , Biocombustibles , Porcinos
5.
Ecol Evol ; 7(17): 6702-6715, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904752

RESUMEN

Requirements for mitigation of the continued increase in greenhouse gas (GHG) emissions are much needed for the North China Plain (NCP). We conducted a meta-analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area-scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH, and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP. The N2O emissions increased exponentially with mineral fertilizer N application rate, with y = 0.2389e0.0058x for wheat season and y = 0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha-1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O-N ha-1 season-1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no-tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no-tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP.

6.
Rapid Commun Mass Spectrom ; 26(20): 2422-30, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22976209

RESUMEN

RATIONALE: The application of organic materials to agricultural lands is considered good practice to improve soil organic matter content and recycle nutrients for crop growth. The anaerobic treatment of food waste may have environmental benefits, particularly with regard to greenhouse gases (GHGs) mitigation and enhancement of carbon sequestration. METHODS: This work presents the results from a field experiment to evaluate CO(2) , CH(4) and N(2) O emissions from grassland amended with digestate produced by anaerobic fermentation of food waste. Experimental plots, located close to Rothamsted Research-North Wyke, were established using a randomized block design with three replicates and two treatments, added digestate (DG) and the unamended control (CNT). The digestate was applied on three occasions at an equivalent rate of 80 kg N ha(-1) . RESULTS: The application of digestate led to an increase in CO(2) emissions, especially after the 2(nd) application (74.1 kg CO(2) -C ha(-1) day(-1) ) compared with the CNT soil (36.4 kg CO(2) -C ha(-1) day(-1) ), whereas DG treatment did not affect the overall CH(4) and N(2) O emissions. The total grass yield harvested on a dry matter basis was greater in the DG treated plots (0.565 kg m(-2) ) than in the CNT plots (0.282 kg m(-2) ), as was the (15) N content in the harvest collected from the DG plots. CONCLUSIONS: The results suggest that the digestate can be applied to agricultural land as a fertilizer to grow crops. Our study was conducted in an exceptionally dry growing season, so conclusions about the effect of digestate on GHG emissions should take this into account, and further field trials conducted under more typical growing seasons are needed.


Asunto(s)
Dióxido de Carbono/análisis , Residuos de Alimentos , Gases/análisis , Efecto Invernadero , Metano/análisis , Óxido Nitroso/análisis , Suelo/análisis , Anaerobiosis , Monitoreo del Ambiente
7.
Bioresour Technol ; 102(21): 9997-10005, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21890354

RESUMEN

Composting is a realistic option for disposal of olive mill pomace (OMP) by making it suitable as a soil amendment for organic farming. The chemical and physical characteristics and contribution of particle-size fractions to total nutrients and carbon mineralization of seven commercial composts of OMP (COMP) were investigated. Higher proportions of manure, co-composted with OMP, reduced the organic matter (OM), total carbon and C:N ratio of the product, but increased the content of nutrients and fine particles. The fine particles had higher nutrient contents, but less OM and carbon and, unlike larger particles, did not exhibit any phytotoxicity. Less than 1.5% of added carbon was mineralized in whole compost, but a lower rate was found with larger particles. Separation of COMP by particle size fractionation and application as a soil conditioner is recommended for better optimization of COMP with the <1mm fraction providing the higher quality compost.


Asunto(s)
Carbono/química , Fraccionamiento Químico/métodos , Residuos Industriales/análisis , Minerales/química , Olea/química , Tamaño de la Partícula , Carbono/análisis , Celulosa/análisis , Lepidium sativum/crecimiento & desarrollo , Lignina/análisis , Nitrógeno/análisis , Fósforo/análisis , Polifenoles/análisis , Análisis de Componente Principal , Suelo
8.
Rapid Commun Mass Spectrom ; 22(11): 1643-52, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18446754

RESUMEN

Litter-dwelling (epigeic) Lumbricus rubellus and soil-dwelling (endogeic) Allolobophora chlorotica earthworms were observed aggregating under C(3) (delta(13)C = -31.3 per thousand; delta(15)N = 10.7 per thousand) and C(4) (delta(13)C = -12.6 per thousand; delta(15)N = 7.5 per thousand) synthetic dung pats applied to a temperate grassland (delta(13)C = -30.3 per thousand; delta(15)N = 5.7 per thousand) in an experiment carried out for 372 days. Bulk delta(13)C values of earthworms collected from beneath either C(3) or C(4) dung after 28, 56, 112 and 372 days demonstrated that (i) L. rubellus beneath C(4) dung were significantly (13)C-enriched after 56 days (delta(13)C = -23.8 per thousand) and 112 days (delta(13)C = -22.4 per thousand) compared with those from C(3) dung treatments (56 days, delta(13)C = -26.5 per thousand; 112 days, delta(13)C = -27.0 per thousand), and (ii) A. chlorotica were 2.1 per thousand (13)C-enriched (delta(13)C = -24.2 per thousand) relative to those from C(3) dung (delta(13)C = -26.3 per thousand) treatments after 372 days. Bulk delta(15)N values did not suggest significant uptake of dung N by either species beneath C(3) or C(4) dung, but showed that the endogeic species (total mean delta(15)N = 3.3 per thousand) had higher delta(15)N values than the epigeic species (total mean delta(15)N = 5.4 per thousand). Although the two species exhibited similar fatty acid profiles, individual fatty acid delta(13)C values revealed extensive routing of dietary C into body tissue of L. rubellus, but minor incorporation into A. chlorotica. In particular, the direct incorporation of microbial biomarker fatty acids (iC(17:0), aC(17:0)) from (13)C-labelled dung in situ, the routing of dung C into de novo synthesised compounds (iC(20:4)(omega)(6),C(20:5)(omega)(3), and the assimilation of essential fatty acids ((C(18:1)(omega)(9), C(18:1)(omega(7), C(18:2)(omega(6), C(18:3)(omega)(3)) derived from dung, were determined.


Asunto(s)
Ácidos Grasos/metabolismo , Conducta Alimentaria/fisiología , Cromatografía de Gases y Espectrometría de Masas/métodos , Oligoquetos/metabolismo , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Ácidos Grasos/química , Heces/química , Suelo/análisis
9.
Rapid Commun Mass Spectrom ; 22(11): 1631-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18446763

RESUMEN

Off-line pyrolysis was used to liberate lignin moieties from dung and soil and, after trimethylsilylation, the delta(13)C values of these derivatives were determined by gas chromatography-combustion-isotope ratio mass spectrometry. Initial delta(13)C values determined for 4-vinylphenol, syringol, 4-vinylguaiacol, 4-acetylsyringol, 4-vinylsyringol, 4-(2-Z-propenyl)syringol, 4-(2-E-propenyl)syringol and 4-(2-propenone)syringol pyrolysis products of the lignin polyphenol structure from C(4) (delta(13)C(bulk) = -12.6%) and C(3) (delta(13)C(bulk) = -30.1 per thousand) dung confirmed the robust and reproducible nature of the off-line preparation technique. C(4) dung was used as a treatment in a randomised field experiment to assess the short-term sequestration of dung carbon in managed grasslands. Since lignin was on average 3.5 per thousand depleted in (13)C compared with bulk dung delta(13)C values, this may have resulted in an under-estimation of dung C incorporation based on bulk delta(13)C values. Therefore, an investigation of the compound-specific delta(13)C values of dung-derived lignin moieties extracted from soils sampled up to 372 days was undertaken. Delta(13)C values between lignin moieties extracted from treated and untreated soils showed that dung-derived lignin was not especially resistant to degradation and suggested that individual moieties of the lignin macromolecule must: (i) move into soil, (ii) be degraded, or (iii) be transformed diagenetically at different rates. This adds to a gathering body of evidence that lignin is not particularly stable in soils, which has considerable significance for the perceived role of different biochemical components in the cycling of C in soils.


Asunto(s)
Heces/química , Cromatografía de Gases y Espectrometría de Masas , Lignina/análisis , Suelo/análisis , Isótopos de Carbono/análisis , Monitoreo del Ambiente/métodos , Calor , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA