Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
RSC Chem Biol ; 3(4): 456-467, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35441144

RESUMEN

Epigenetic regulation is a dynamic and reversible process that controls gene expression. Abnormal function results in human diseases such as cancer, thus the enzymes that establish epigenetic marks, such as histone methyltransferases (HMTs), are potentially therapeutic targets. Noteworthily, HMTs form multiprotein complexes that in concert regulate gene expression. To probe epigenetic protein complexes regulation in cells, we developed a reliable chemical biology high-content imaging strategy to screen compound libraries simultaneously on multiple histone marks inside cells. By this approach, we identified that compound 4, a published CARM1 inhibitor, inhibits both histone mark H3R2me2a, regulated also by CARM1, and H3K79me2, regulated only by DOT1L, pointing out a crosstalk between CARM1 and DOT1L. Based on this interaction, we combined compound 4 and DOT1L inhibitor EPZ-5676 resulting in a stronger inhibition of cell proliferation and increase in apoptosis, indicating that our approach identifies possible effective synergistic drug combinations.

2.
Future Med Chem ; 14(8): 557-570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35332778

RESUMEN

Background: Post-translational modifications of histones constitute a dynamic process impacting gene expression. A well-studied modification is lysine methylation. Among the lysine histone methyltransferases, DOT1L is implicated in various diseases, making it a very interesting target for drug discovery. DOT1L has two substrates, the SAM cofactor that gives the methyl group and the lysine H3K79 substrate. Results: Using molecular docking, the authors explored new bisubstrate analogs to enlarge the chemical landscape of DOT1L inhibitors. The authors showed that quinazoline can successfully replace the adenine in the design of bisubstrate inhibitors of DOT1L, showing similar activity compared with the adenine derivative but with diminished cytotoxicity. Conclusion: The docking model is validated together with the use of quinazoline in the design of bisubstrate inhibitors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia , Adenina/farmacología , Antídotos , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia/metabolismo , Simulación del Acoplamiento Molecular , Quinazolinas/farmacología
3.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500733

RESUMEN

Histone methyltransferase DOT1L catalyzes mono-, di- and trimethylation of histone 3 at lysine residue 79 (H3K79) and hypermethylation of H3K79 has been linked to the development of acute leukemias characterized by the MLL (mixed-lineage leukemia) rearrangements (MLLr cells). The inhibition of H3K79 methylation inhibits MLLr cells proliferation, and an inhibitor specific for DOT1L, pinometostat, was in clinical trials (Phase Ib/II). However, the compound showed poor pharmacological properties. Thus, there is a need to find new potent inhibitors of DOT1L for the treatment of rearranged leukemias. Here we present the design, synthesis, and biological evaluation of a small molecule that inhibits in the nM level the enzymatic activity of hDOT1L, H3K79 methylation in MLLr cells with comparable potency to pinometostat, associated with improved metabolic stability and a characteristic cytostatic effect.


Asunto(s)
Citostáticos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Metilación/efectos de los fármacos , Estructura Molecular
5.
Eur J Med Chem ; 135: 392-400, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28460313

RESUMEN

The use of near-infrared fluorescence for in vivo research and intraoperative clinical imaging is rapidly expanding, with new applications being proposed and developed. While imaging hardware and software have significantly progressed in recent times, the molecular fluorescent agents remain a limiting factor. In this report, the design, synthesis, photophysical characterization and bio-medical imaging assessment of two new NIR-fluorophores based on the BF2-azadipyrromethene fluorophore class are described. Inclusion of dimethylamino substituents on these BF2-azadipyrromethene probes results in very large bathochromic shifts with photophysical measurements showing absorption and emission maxima between 757 and 818 nm within the desired NIR spectra region. Testing of the probes shows that they are suitable for fluorescence imaging with both research and clinical instrumentation. Preclinical imaging assessment shows their suitability as fluorescent markers (tattoos) of lesions for intraoperative identification and lymphatic mapping in ex vivo human colonic tissue. These new clinical wavelength-compatible fluorophores may contribute towards the on-going expansion of medical uses for NIR-fluorescence.


Asunto(s)
Compuestos Aza/química , Compuestos de Boro/química , Colon/diagnóstico por imagen , Colorantes Fluorescentes/química , Porfobilinógeno/análogos & derivados , Compuestos Aza/administración & dosificación , Compuestos de Boro/administración & dosificación , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/administración & dosificación , Humanos , Estructura Molecular , Porfobilinógeno/administración & dosificación , Porfobilinógeno/química , Espectroscopía Infrarroja Corta , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA