Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Rheum Dis ; 83(10): 1233-1253, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38702177

RESUMEN

Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.


Asunto(s)
Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/terapia , Enfermedades Reumáticas/inmunología , Enfermedades Reumáticas/terapia , Enfermedades Reumáticas/tratamiento farmacológico , Inflamación/inmunología , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Macrófagos/inmunología , Fibroblastos/inmunología
2.
J Autoimmun ; 144: 103185, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38428109

RESUMEN

BACKGROUND: The significance of muscle biopsy as a diagnostic tool in idiopathic inflammatory myopathies (IIM) remains elusive. We aimed to determine the diagnostic weight that has been given to muscle biopsy in patients with suspected IIM, particularly in terms of clinical diagnosis and therapeutic decisions. MATERIAL AND METHODS: In this retrospective multicentric study, we analyzed muscle biopsy results of adult patients with suspected IIM referred to a tertiary center between January 1, 2007, and October 31, 2021. Information regarding referral department, suspected diagnosis, biopsy site, demographic, clinical, laboratory data, and imaging results were extracted. Statistical analyses included the level of agreement between suspected and histological diagnosis and calculation of diagnostic performance (positive and negative predictive values, positive and negative likelihood ratios, sensitivity, and specificity of muscle biopsy in relation to clinical diagnosis and/or treatment initiation). Performance was tested in different strata based on clinical pre-test probability. RESULTS: Among 758 muscle biopsies, IIM was histologically compatible in 357/758 (47.1%) cases. Proportion of IIM was higher if there was a solid clinical pre-test probability (64.3% vs. 42.4% vs. 48% for high, medium and low pre-test probability). Sensitivity and specificity of muscle biopsy were highest (82%) when the diagnosis by the clinician was used as outcome scenario. Negative predictive value was only moderate (between 63% and 80%) and lowest if autoantibodies were positive (35%). CONCLUSION: In patients with clinically suspected IIM, approximately 50% of biopsies revealed features indicative of IIM. Diagnostic performance of muscle biopsy was moderate to high depending on clinical pre-test probability.


Asunto(s)
Miositis , Adulto , Humanos , Estudios Retrospectivos , Miositis/diagnóstico , Miositis/patología , Biopsia , Toma de Decisiones Clínicas , Autoanticuerpos , Músculos
3.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984422

RESUMEN

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Ratones , Animales , Sinoviocitos/metabolismo , Aminoácidos/metabolismo , Artritis Reumatoide/genética , Factor de Necrosis Tumoral alfa/metabolismo , Quimiocina CXCL10/metabolismo , Aminas/metabolismo , Fibroblastos/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Células Cultivadas
4.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344156

RESUMEN

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Humanos , Citocinas , Factor de Necrosis Tumoral alfa/farmacología , Membrana Sinovial/patología , Sinoviocitos/patología , Fibroblastos/patología , Células Cultivadas
5.
Rheumatology (Oxford) ; 61(11): 4535-4546, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35258553

RESUMEN

OBJECTIVES: TNF-induced activation of fibroblast-like synoviocytes (FLS) is a critical determinant for synovial inflammation and joint destruction in RA. The detrimental role of TNF-receptor 1 (TNFR1) has thoroughly been characterized. The contributions of TNFR2, however, are largely unknown. This study was performed to delineate the role of TNFR2 in human FLS activation. METHODS: TNFR2 expression in synovial tissue samples was determined by immunohistochemistry. Expression of TNFR2 was silenced using RNAi or CRISPR/Cas9 technologies. Global transcriptional changes were determined by RNA-seq. QPCR, ELISA and immunoblotting were used to validate RNA-seq results and to uncover pathways operating downstream of TNFR2 in FLS. RESULTS: TNFR2 expression was increased in RA when compared with OA synovial tissues. In particular, RA-FLS demonstrated higher levels of TNFR2 when compared with OA-FLS. TNFR2 expression in RA-FLS correlated with RA disease activity, synovial T- and B-cell infiltration. TNF and IL1ß were identified as inflammatory mediators that upregulate TNFR2 in RA-FLS. Silencing of TNFR2 in RA-FLS markedly diminished the TNF-induced expression of inflammatory cytokines and chemokines, including CXCR3-binding chemokines and the B-cell activating factor TNFSF13B. Immunobiochemical analyses revealed that TNFR2-mediated expression of inflammatory mediators critically depends on STAT1. CONCLUSION: Our results define a critical role for TNFR2 in FLS-driven inflammation and unfold its participation in the unresolved course of synovial inflammation in RA.


Asunto(s)
Artritis Reumatoide , Receptores Tipo II del Factor de Necrosis Tumoral , Sinoviocitos , Humanos , Artritis Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
6.
Am J Transplant ; 21(2): 525-539, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33063442

RESUMEN

Epidemiological and experimental data implicate cutaneous human papillomavirus infection as co-factor in the development of cutaneous squamous cell carcinomas (cSCCs), particularly in immunocompromised organ transplant recipients (OTRs). Herein, we established and characterized a skin cancer model, in which Mus musculus papillomavirus 1 (MmuPV1) infection caused cSCCs in cyclosporine A (CsA)-treated mice, even in the absence of UV light. Development of cSCCs and their precursors were observed in 70% of MmuPV1-infected, CsA-treated mice on back as well as on tail skin. Immunosuppression by systemic CsA, but not UV-B irradiation, was a prerequisite, as immunocompetent or UV-B-irradiated mice did not develop skin malignancies after infection. In the virus-driven cSCCs the MmuPV1-E6/E7 oncogenes were abundantly expressed, and transcriptional activity and productive infection demonstrated. MmuPV1 infection induced the expression of phosphorylated H2AX, but not degradation of proapoptotic BAK in the cSCCs. Transfer of primary cells, established from a MmuPV1-induced cSCC from back skin, into athymic nude mice gave rise to secondary cSCCs, which lacked viral DNA, demonstrating that maintenance of the malignant phenotype was virus independent. This papillomavirus-induced skin cancer model opens future investigations into viral involvement, pathogenesis, and cancer surveillance, aiming at understanding and controlling the high incidence of skin cancer in OTRs.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias Cutáneas , Animales , Terapia de Inmunosupresión , Ratones , Ratones Desnudos , Papillomaviridae , Neoplasias Cutáneas/inducido químicamente
7.
Acta Derm Venereol ; 101(1): adv00367, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349888

RESUMEN

Cathelicidins have been reported to inhibit human papillomavirus infection in vitro; however, nothing is known about their activity in vivo. In this study, experimental skin infection with Mus musculus papillomavirus 1 resulted in robust development of cutaneous papillomas in cyclosporine A-treated C57BL/6J mice deficient for the murine cathelicidin-related antimicrobial peptide (CRAMP), in contrast to wild-type controls. Analysis of the underlying mechanisms revealed moderate disruption of virion integrity and lack of interference with viral entry and intracellular trafficking by a synthetic CRAMP peptide. Differences in the immune response to Mus musculus papillomavirus 1 infection were observed between CRAMP-deficient and wild-type mice. These included a stronger reduction in CD4+ and CD8+ T-cell numbers in infected skin, and lack of Mus musculus papillomavirus 1-specific neutralizing antibodies in response to cyclosporine A in the absence of endogenous CRAMP. CRAMP has modest direct anti-papillomaviral effects in vitro, but exerts protective functions against Mus musculus papillomavirus 1 skin infection and disease development in vivo, primarily by modulation of cellular and humoral immunity.


Asunto(s)
Papiloma , Papillomaviridae , Animales , Péptidos Catiónicos Antimicrobianos , Catelicidinas , Ratones , Ratones Endogámicos C57BL , Papiloma/inducido químicamente , Papillomaviridae/genética
9.
Exp Mol Med ; 51(7): 1-11, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285419

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovial inflammation. The major drivers of synovial inflammation are cytokines and chemokines. Among these molecules, TNF activates fibroblast-like synoviocytes (FLSs), which leads to the production of inflammatory mediators. Here, we show that TNF regulates the expression of the transcription factor interferon regulatory factor 1 (IRF1) in human FLSs as well as in a TNF transgenic arthritis mouse model. Transcriptomic analyses of IRF1-deficient, TNF-stimulated FLSs define the interferon (IFN) pathway as a major target of IRF1. IRF1 expression is associated with the expression of IFNß, which leads to the activation of the JAK-STAT pathway. Blocking the JAK-STAT pathway with the Janus kinase inhibitor (JAKinib) baricitinib or tofacitinib reduces the expression of IFN-regulated genes (IRGs) in TNF-activated FLSs. Therefore, we conclude that TNF induces a distinct inflammatory cascade, in which IRGs are key elements, in FLSs. The IFN-signature might be a promising biomarker for the efficient and personalized use of new treatment strategies for RA, such as JAKinibs.


Asunto(s)
Artritis Reumatoide/inmunología , Factor 1 Regulador del Interferón/metabolismo , Interferones/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Azetidinas/uso terapéutico , Biomarcadores/metabolismo , Femenino , Expresión Génica , Humanos , Inflamación , Factor 1 Regulador del Interferón/genética , Interferones/genética , Inhibidores de las Cinasas Janus/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas/uso terapéutico , Purinas , Pirazoles , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Sulfonamidas/uso terapéutico , Membrana Sinovial/inmunología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Sinoviocitos/metabolismo , Factor de Necrosis Tumoral alfa/genética
10.
Semin Immunopathol ; 41(3): 301-314, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953162

RESUMEN

Regulatory (Treg) cells are key regulators of inflammation and important for immune tolerance and homeostasis. A major progress has been made in the identification and classification of Treg cells. Due to technological advances, we have gained deep insights in the epigenetic regulation of Treg cells. The use of fate reporter mice allowed addressing the functional consequences of loss of Foxp3 expression. Depending on the environment Treg cells gain effector functions upon loss of Foxp3 expression. However, the traditional view that Treg cells become necessarily pathogenic by gaining effector functions was challenged by recent findings and supports the notion of Treg cell lineage plasticity. Treg cell stability is also a major issue for Treg cell therapies. Clinical trials are designed to use polyclonal Treg cells as therapeutic tools. Here, we summarize the role of Treg cells in selected autoimmune diseases and recent advances in the field of Treg targeted therapies.


Asunto(s)
Autoinmunidad , Linfocitos T Reguladores/inmunología , Animales , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Diferenciación Celular/inmunología , Plasticidad de la Célula/inmunología , Epigénesis Genética , Humanos , Inmunomodulación , Inmunoterapia Adoptiva , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
11.
J Cell Mol Med ; 22(11): 5278-5285, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30133119

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, characterized by synovial infiltration of various inflammatory cells. Chemokines are involved in controlling the recruitment of different cell types into the synovial membrane. The role of CCR6 in the development of arthritis so far remains unclear. In this study, we investigated the role of CCR6 in the pathogenesis of arthritis using three different murine arthritis models. Compared to WT animals, CCR6-/- mice developed less clinical signs of arthritis in the collagen-induced arthritis model but not in the K/BxN serum transfer arthritis model and in the human tumour necrosis factor transgenic arthritis model, suggesting a defect in adaptive effector functions but intact innate effector functions in the development of arthritis in CCR6-/- animals. In line with this, anti-collagen antibody levels were significantly reduced in CCR6-/- mice compared with WT mice. Moreover, we demonstrate enhanced osteoclastogenesis in vitro in CCR6-/- mice compared with WT mice. However, we did not detect differences in bone mass under steady state conditions in vivo between WT and CCR6-deficient mice. These data suggest that CCR6 is crucially involved in adaptive but not in innate immunity-driven arthritis. CCR6 or its chemokine ligand CCL20 might represent a possible new target for the treatment of RA.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Enfermedades Autoinmunes/genética , Quimiocina CCL20/genética , Receptores CCR6/genética , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Quimiocina CCL20/inmunología , Humanos , Inmunidad Innata/genética , Ratones , Receptores CCR6/inmunología , Membrana Sinovial/inmunología , Membrana Sinovial/patología
12.
Ann Rheum Dis ; 77(10): 1490-1497, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959183

RESUMEN

OBJECTIVES: Bone destruction in rheumatoid arthritis is mediated by osteoclasts (OC), which are derived from precursor cells of the myeloid lineage. The role of the two monocyte subsets, classical monocytes (expressing CD115, Ly6C and CCR2) and non-classical monocytes (which are CD115 positive, but low in Ly6C and CCR2), in serving as precursors for OC in arthritis is still elusive. METHODS: We investigated CCR2-/- mice, which lack circulating classical monocytes, crossed into hTNFtg mice for the extent of joint damage. We analysed monocyte subsets in hTNFtg and K/BxN serum transfer arthritis by flow cytometry. We sorted monocyte subsets and analysed their potential to differentiate into OC and their transcriptional response in response to RANKL by RNA sequencing. With these data, we performed a gene ontology enrichment analysis and gene set enrichment analysis. RESULTS: We show that in hTNFtg arthritis local bone erosion and OC generation are even enhanced in the absence of CCR2. We further show the numbers of non-classical monocytes in blood are elevated and are significantly correlated with histological signs of joint destruction. Sorted non-classical monocytes display an increased capacity to differentiate into OCs. This is associated with an increased expression of signal transduction components of RANK, most importantly TRAF6, leading to an increased responsiveness to RANKL. CONCLUSION: Therefore, non-classical monocytes are pivotal cells in arthritis tissue damage and a possible target for therapeutically intervention for the prevention of inflammatory joint damage.


Asunto(s)
Artritis Experimental/fisiopatología , Artritis Reumatoide/fisiopatología , Resorción Ósea/fisiopatología , Monocitos/fisiología , Osteoclastos/fisiología , Animales , Artritis Experimental/complicaciones , Artritis Reumatoide/complicaciones , Resorción Ósea/etiología , Diferenciación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores CCR2/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo
13.
Curr Opin Rheumatol ; 30(3): 295-300, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401118

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to summarize the current knowledge concerning the mechanisms of action of Abatacept in patients with rheumatoid arthritis. RECENT FINDINGS: Abatacept (CTLA-4Ig) represents a soluble, recombinant, fully humanized fusion protein, comprising the extracellular domain of CTLA-4 and the Fc portion of IgG1. Abatacept binds to the costimulatory molecules CD80 and CD86 on antigen-presenting cells (APC), thereby blocking interaction with CD28 on T cells. In humans, Abatacept treatment was shown to be effective in patients with various autoinflammatory diseases including rheumatoid arthritis. Although the prevention of T-cell activation by interfering with signaling via CD28 still represents the main mechanism of action Abatacept acts on additional cell populations including regulatory T cells (Treg), monocytes/macrophages, osteoclasts, and B cells. SUMMARY: Effects of Abatacept on other cell populations besides T cells have to be taken into account and might represent a valuable contribution to the therapeutic success.


Asunto(s)
Abatacept/farmacología , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Macrófagos/efectos de los fármacos , Abatacept/uso terapéutico , Antirreumáticos/uso terapéutico , Artritis Reumatoide/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología
14.
J Autoimmun ; 82: 74-84, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28545737

RESUMEN

Synovial fibroblasts are key cells orchestrating the inflammatory response in arthritis. Here we demonstrate that loss of miR-146a, a key epigenetic regulator of the innate immune response, leads to increased joint destruction in a TNF-driven model of arthritis by specifically regulating the behavior of synovial fibroblasts. Absence of miR-146a in synovial fibroblasts display a highly deregulated gene expression pattern and enhanced proliferation in vitro and in vivo. Deficiency of miR-146a induces deregulation of tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) in synovial fibroblasts, leading to increased proliferation. In addition, loss of miR-146a shifts the metabolic state of fibroblasts towards glycolysis and augments the ability of synovial fibroblasts to support the generation of osteoclasts by controlling the balance of osteoclastogenic regulatory factors receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG). Bone marrow transplantation experiments confirmed the importance of miR-146a in the radioresistant mesenchymal compartment for the control of arthritis severity, in particular for inflammatory joint destruction. This study therefore identifies microRNA-146a as an important local epigenetic regulator of the inflammatory response in arthritis. It is a central element of an anti-inflammatory feedback loop in resident synovial fibroblasts, who are orchestrating the inflammatory response in chronic arthritis. MiR-146a restricts their activation, thereby preventing excessive tissue damage during arthritis.


Asunto(s)
Artritis/genética , Artritis/metabolismo , Fibroblastos/metabolismo , Articulaciones/metabolismo , Articulaciones/patología , MicroARNs/genética , Animales , Artritis/patología , Artritis Experimental , Resorción Ósea/genética , Proliferación Celular , Modelos Animales de Enfermedad , Fibroblastos/patología , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Interferencia de ARN , Membrana Sinovial/citología , Membrana Sinovial/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
15.
Rheumatology (Oxford) ; 55(4): 710-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26672908

RESUMEN

OBJECTIVE: Abatacept (CTLA-4Ig) blocks CD28-mediated T cell activation by binding to the costimulatory B7 ligands CD80/CD86 on antigen presenting cells. Costimulatory molecules, however, can also be expressed on T cells upon activation. Therefore, the aim of our study was to investigate direct effects of CTLA-4Ig on distinct T cell subsets in RA patients. METHODS: Phenotypic and functional analyses of CD4(+) T cells, including CD4(+) FoxP3(+) CD25(+) regulatory T cells (Treg), from RA patients were performed before and during CTLA-4Ig therapy. In addition T cells from healthy volunteers were analysed on in vitro culture with CTLA-4Ig or anti-CD80 and anti-CD86 antibodies. Apoptotic DNA fragmentation in CD4(+) and CD4(+) FoxP3(+) T cells was measured by TUNEL staining. RESULTS: We observed an increase in T cells, including Treg cells, after initiation of CTLA-4Ig therapy, which was linked to a downregulation of activation-associated marker molecules and CD95 on CD4(+) T cells and Treg cells. CTLA-4Ig decreased CD95-mediated cell death in vitro in a dose-dependent manner. Functional analysis of isolated Treg cells from RA patients further revealed a diminished suppression of responder T cell proliferation. This was found to be due to CTLA-4Ig-mediated blocking of CD80 and CD86 on responder T cells that led to a diminished susceptibility for Treg cell suppression. CONCLUSION: CTLA-4Ig therapy in RA patients exerts effects beyond the suppression of T cell activation, which has to be taken into account as an additional mechanism of CTLA-4Ig treatment.


Asunto(s)
Abatacept/farmacología , Antirreumáticos/farmacología , Apoptosis/efectos de los fármacos , Artritis Reumatoide/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Abatacept/uso terapéutico , Antirreumáticos/uso terapéutico , Apoptosis/inmunología , Artritis Reumatoide/tratamiento farmacológico , Linfocitos T CD4-Positivos/efectos de los fármacos , Células Cultivadas , Femenino , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Inmunofenotipificación , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Receptor fas/inmunología
16.
Arthritis Res Ther ; 17: 230, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26307404

RESUMEN

INTRODUCTION: Autoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood. METHODS: We measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN(-/-)) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN(-/-) mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells. RESULTS: We show that myeloid-specific PTEN(-/-) mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions. CONCLUSIONS: These data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Artritis Experimental/inmunología , Enfermedades Autoinmunes/inmunología , Fosfohidrolasa PTEN/inmunología , Células Th17/inmunología , Animales , Células Presentadoras de Antígenos/metabolismo , Artritis Experimental/genética , Artritis Experimental/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Western Blotting , Citocinas/sangre , Citocinas/genética , Citocinas/inmunología , Citometría de Flujo , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Th17/metabolismo
17.
Plast Reconstr Surg ; 136(1): 54e-58e, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26111332

RESUMEN

BACKGROUND: Free tissue transfer using fasciocutaneous flaps has increased in frequency over the past decade. Predictive analyses are lacking for fasciocutaneous free flaps in terms of complication rates for reconstruction. This study therefore was designed to identify key variables that drive complications in fasciocutaneous free flap surgery. METHODS: A retroactive chart review of 91 patients undergoing 91 fasciocutaneous flaps was performed. Twelve variables were identified and tracked through clinic and hospital charts (i.e., surgeon experience, hospital, age, flap type, traumatic wound, smoking, large fasciocutaneous flap, type of anastomosis, recipient vessel choice, sex, anatomical region of wound, and flap debulking). A logistic regression model was used to determine the presence of complications associated with the prescribed predictors. RESULTS: The model revealed that smoking, age, anatomical area of wound, flap size, flap type, and presence of a traumatic wound impacted complications. The model was found to be a good fit (Hosmer-Lemeshow, p = 0.135). Factors impacting complications with fasciocutaneous flaps included anatomical area (62.3 percent increase in complications; p = 0.047), surgeon experience (27 percent reduction in complications; p = 0.007), and reconstruction of a trauma activation patient (80 percent reduction in complications; p = 0.025). CONCLUSION: The implications of these findings can be used to contain cost and minimize poor outcomes within the health care system.


Asunto(s)
Colgajos Tisulares Libres , Procedimientos de Cirugía Plástica/métodos , Complicaciones Posoperatorias/etiología , Adulto , Anciano , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos , Factores de Riesgo
18.
PLoS Pathog ; 10(8): e1004314, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25121947

RESUMEN

The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated "MmuPV1"), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific human papillomavirus genotype.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Susceptibilidad a Enfermedades/inmunología , Infecciones por Papillomavirus/inmunología , Animales , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos SENCAR , Ratones Noqueados , Papillomaviridae
19.
Int Immunol ; 24(7): 417-26, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366044

RESUMEN

Regulatory T cells (Treg) with the capacity to suppress T-cell proliferation exert various effects on T cell function. In addition, Treg have been shown to modulate the phenotype and function of antigen-presenting cells (APC) including dendritic cells (DC), B cells and monocytes/macrophages. However, the specific mechanism(s) of how Treg affect APC have not been entirely identified so far. In this study, we analyzed the interaction of human Treg and effector T cells (Teff) with peripheral blood myeloid and monocyte-derived dendritic cells in vitro. A strong tendency for cell cluster formation between Treg and DC was observed, which was dependent on the adhesion molecules ICAM-1, LFA-3 and ICAM-3. In addition, Treg were found to express higher levels of LFA-1, LFA-2, LFA-3 and ICAM-3 both before and after activation with anti-CD3 antibodies. Using in vitro live cell imaging, we were further able to show that Treg-DC cell clusters, in contrast to Teff-DC clusters, were stable and long lasting. Co-cultures of DC with Treg diminished the up-regulation of activation induced costimulatory molecule expression on DC, and further reduced the production of tumor necrosis factor alpha and stimulated the production of IL-4. In summary, our data indicate that Treg-DC cluster formation might enable Treg to modulate phenotypic and functional characteristics of DC and help to constrain Teff activation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Comunicación Celular/inmunología , Células Dendríticas/inmunología , Células Mieloides/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Humanos , Tolerancia Inmunológica , Interleucina-4/genética , Interleucina-4/metabolismo , Monocitos/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
20.
Wien Klin Wochenschr ; 124(5-6): 170-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210441

RESUMEN

INTRODUCTION: Rheumatoid arthritis is a chronic autoimmune disease characterised by inflammation of joints with cartilage and bone destruction leading to progressive disability. While the cause of rheumatoid arthritis is not known and the disease cannot be cured, conventional disease modifying antirheumatic drugs and biologicals are effective treatments for many patients. However, new therapies are needed in order to achieve better relief from rheumatoid arthritis symptoms than currently possible and to fully prevent joint damage. 18ß-Glycyrrhetinic acid is not only used frequently in traditional Chinese medicine, but has been reported to target some of the inflammatory mediators involved in the pathogenesis of rheumatoid arthritis. Moreover, it has been reported that liquorice, which contains high levels of 18ß-Glycyrrhetinic acid, reduces inflammation and articular damage in collagen induced arthritis. Therefore, we studied the effects of 18ß-Glycyrrhetinic acid in a Tumor necrosis factor (TNF) dependent mouse model of rheumatoid arthritis. MATERIAL AND METHODS: HTNFtg mice were treated with 18ß-Glycyrrhetinic acid from day 28 after birth every second or third day for 2 weeks, or 3 times a week for six weeks. TNF inhibitor treated animals served as positive control. RESULTS: Clinical scores of arthritis were not altered in animals treated with 18ß-Glycyrrhetinic acid compared to placebo treated animals. Histological data also indicate no effects of 18ß-Glycyrrhetinic acid on inflammatory joint destruction. TNF inhibitors, however markedly reduced not only clinical signs of TNF triggered joint inflammation but also histological signs of erosive disease. Therefore, in contrast to previous reports our data indicate that 18ß-Glycyrrhetinic acid does not provide a new therapeutic option for treating patients with rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Modelos Animales de Enfermedad , Ácido Glicirretínico/análogos & derivados , Factor de Necrosis Tumoral alfa/genética , Animales , Antirreumáticos/uso terapéutico , Ácido Glicirretínico/uso terapéutico , Humanos , Ratones , Ratones Transgénicos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA