Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Bone Marrow Transplant ; 58(3): 239-246, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36477111

RESUMEN

Graft-versus-host disease (GvHD) remains one of the major complications following allogeneic haematopoietic stem cell transplantation (allo-HSCT). GvHD can occur in almost every tissue, with the skin, liver, and intestines being the mainly affected organs. T cells are implicated in initiating GvHD. T cells identify a broad range of antigens and mediate the immune response through receptors on their surfaces (T cell receptors, TCRs). The composition of TCRs within a T cell population defines the TCR repertoire of an individual, and this repertoire represents exposure to self and non-self proteins. Monitoring the changes in the TCR repertoire using TCR sequencing can provide an indication of the dynamics of a T cell population. Monitoring the frequency and specificities of specific TCR clonotypes longitudinally in different conditions and specimens (peripheral blood, GvHD-affected tissue samples) can provide insights into factors modulating immune reactions following allogeneic transplantation and will help to understand the underlying mechanisms mediating GvHD. This review provides insights into current studies of the TCR repertoire in GvHD and potential future clinical implications of TCR sequencing.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Trasplante Homólogo
4.
Diabetologia ; 65(12): 2121-2131, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36028774

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to develop strategies that identify children from the general population who have late-stage presymptomatic type 1 diabetes and may, therefore, benefit from immune intervention. METHODS: We tested children from Bavaria, Germany, aged 1.75-10 years, enrolled in the Fr1da public health screening programme for islet autoantibodies (n=154,462). OGTT and HbA1c were assessed in children with multiple islet autoantibodies for diagnosis of presymptomatic stage 1 (normoglycaemia) or stage 2 (dysglycaemia) type 1 diabetes. Cox proportional hazards and penalised logistic regression of autoantibody, genetic, metabolic and demographic information were used to develop a progression likelihood score to identify children with stage 1 type 1 diabetes who progressed to stage 3 (clinical) type 1 diabetes within 2 years. RESULTS: Of 447 children with multiple islet autoantibodies, 364 (81.4%) were staged. Undiagnosed stage 3 type 1 diabetes, presymptomatic stage 2, and stage 1 type 1 diabetes were detected in 41 (0.027% of screened children), 30 (0.019%) and 293 (0.19%) children, respectively. The 2 year risk for progression to stage 3 type 1 diabetes was 48% (95% CI 34, 58) in children with stage 2 type 1 diabetes (annualised risk, 28%). HbA1c, islet antigen-2 autoantibody positivity and titre, and the 90 min OGTT value were predictors of progression in children with stage 1 type 1 diabetes. The derived progression likelihood score identified substages corresponding to ≤90th centile (stage 1a, n=258) and >90th centile (stage 1b, n=29; 0.019%) of stage 1 children with a 4.1% (95% CI 1.4, 6.7) and 46% (95% CI 21, 63) 2 year risk of progressing to stage 3 type 1 diabetes, respectively. CONCLUSIONS/INTERPRETATION: Public health screening for islet autoantibodies found 0.027% of children to have undiagnosed clinical type 1 diabetes and 0.038% to have undiagnosed presymptomatic stage 2 or stage 1b type 1 diabetes, with 50% risk to develop clinical type 1 diabetes within 2 years.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Humanos , Diabetes Mellitus Tipo 1/epidemiología , Islotes Pancreáticos/metabolismo , Salud Pública , Autoanticuerpos , Tamizaje Masivo , Progresión de la Enfermedad
5.
EBioMedicine ; 82: 104118, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35803018

RESUMEN

BACKGROUND: Diabetes in childhood and adolescence includes autoimmune and non-autoimmune forms with heterogeneity in clinical and biochemical presentations. An unresolved question is whether there are subtypes, endotypes, or theratypes within these forms of diabetes. METHODS: The multivariable classification and regression tree (CART) analysis method was used to identify subgroups of diabetes with differing residual C-peptide levels in patients with newly diagnosed diabetes before 20 years of age (n=1192). The robustness of the model was assessed in a confirmation and prognosis cohort (n=2722). FINDINGS: The analysis selected age, haemoglobin A1c (HbA1c), and body mass index (BMI) as split parameters that classified patients into seven islet autoantibody-positive and three autoantibody-negative groups. There were substantial differences in genetics, inflammatory markers, diabetes family history, lipids, 25-OH-Vitamin D3, insulin treatment, insulin sensitivity and insulin autoimmunity among the groups, and the method stratified patients with potentially different pathogeneses and prognoses. Interferon-É£ and/or tumour necrosis factor inflammatory signatures were enriched in the youngest islet autoantibody-positive groups and in patients with the lowest C-peptide values, while higher BMI and type 2 diabetes characteristics were found in older patients. The prognostic relevance was demonstrated by persistent differences in HbA1c at 7 years median follow-up. INTERPRETATION: This multivariable analysis revealed subgroups of young patients with diabetes that have potential pathogenetic and therapeutic relevance. FUNDING: The work was supported by funds from the German Federal Ministry of Education and Research (01KX1818; FKZ 01GI0805; DZD e.V.), the Innovative Medicine Initiative 2 Joint Undertaking INNODIA (grant agreement No. 115797), the German Robert Koch Institute, and the German Diabetes Association.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adolescente , Autoanticuerpos , Autoinmunidad , Péptido C , Niño , Diabetes Mellitus Tipo 1/diagnóstico , Hemoglobina Glucada/análisis , Humanos , Adulto Joven
6.
Pediatr Diabetes ; 23(6): 714-720, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35561070

RESUMEN

OBJECTIVE: Type 1 diabetes is associated with autoantibodies to different organs that include the gut. The objective of the study was to determine the risk of developing gastric parietal cell autoimmunity in relation to other autoimmunity in individuals with a family history of type 1 diabetes. METHODS: Autoantibodies to the parietal cell autoantigen, H+ /K+ ATPase subunit A (ATP4A) was measured in 2218 first-degree relatives of patients with type 1 diabetes, who were prospectively followed from birth for a median of 14.5 years. All were also tested regularly for the development of islet autoantibodies, transglutaminase autoantibodies, and thyroid peroxidase autoantibodies. RESULTS: The cumulative risk to develop ATP4A autoantibodies was 8.1% (95% CI, 6.6-9.6) by age 20 years with a maximum incidence observed at age 2 years. Risk was increased in females (HR, 1.9; 95% CI, 1.3-2.8; p = 0.0004), relatives with the HLA DR4-DQ8/DR4-DQ8 genotype (HR, 3.4; 95% CI, 1.9-5.9; p < 0.0001) and in participants who also had thyroid peroxidase autoantibodies (HR, 3.7; 95% CI, 2.5-5.5; p < 0.0001). Risk for at least one of ATP4A-, islet-, transglutaminase-, or thyroid peroxidase-autoantibodies was 24.7% (95% CI, 22.6-26.7) by age 20 years and was 47.3% (95% CI, 41.3-53.3) in relatives who had an HLA DR3/DR4-DQ8, DR4-DQ8/DR4-DQ8, or DR3/DR3 genotype (p < 0.0001 vs. other genotypes). CONCLUSIONS: Relatives of patients with type 1 diabetes who have risk genotypes are at very high risk for the development of autoimmunity against gastric and other organs.


Asunto(s)
Autoanticuerpos , Diabetes Mellitus Tipo 1 , ATPasa Intercambiadora de Hidrógeno-Potásio , Islotes Pancreáticos , Adolescente , Autoanticuerpos/genética , Autoinmunidad/genética , Niño , Preescolar , Femenino , Genotipo , ATPasa Intercambiadora de Hidrógeno-Potásio/inmunología , Antígeno HLA-DR4/genética , Humanos , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Transglutaminasas/metabolismo , Adulto Joven
8.
JAMA ; 323(4): 339-351, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31990315

RESUMEN

IMPORTANCE: Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. OBJECTIVE: To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. DESIGN, SETTING, AND PARTICIPANTS: Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. EXPOSURES: Measurement of islet autoantibodies. MAIN OUTCOMES AND MEASURES: The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; >20 indicates severe depression). RESULTS: Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P < .001). CONCLUSIONS AND RELEVANCE: Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies.


Asunto(s)
Autoanticuerpos/sangre , Diabetes Mellitus Tipo 1/epidemiología , Islotes Pancreáticos/inmunología , Tamizaje Masivo , Enfermedades Asintomáticas/epidemiología , Enfermedades Asintomáticas/psicología , Preescolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/psicología , Femenino , Estudios de Seguimiento , Alemania/epidemiología , Humanos , Masculino , Padres , Encuestas y Cuestionarios
9.
Front Immunol ; 10: 2568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781096

RESUMEN

CD8+ T cells are important effectors of adaptive immunity against pathogens, tumors, and self antigens. Here, we asked how human cognate antigen-responsive CD8+ T cells and their receptors could be identified in unselected single-cell gene expression data. Single-cell RNA sequencing and qPCR of dye-labeled antigen-specific cells identified large gene sets that were congruently up- or downregulated in virus-responsive CD8+ T cells under different antigen presentation conditions. Combined expression of TNFRSF9, XCL1, XCL2, and CRTAM was the most distinct marker of virus-responsive cells on a single-cell level. Using transcriptomic data, we developed a machine learning-based classifier that provides sensitive and specific detection of virus-responsive CD8+ T cells from unselected populations. Gene response profiles of CD8+ T cells specific for the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein differed markedly from virus-specific cells. These findings provide single-cell gene expression parameters for comprehensive identification of rare antigen-responsive cells and T cell receptors.


Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Autoantígenos/inmunología , Perfilación de la Expresión Génica/métodos , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Péptidos/inmunología , Análisis de la Célula Individual/métodos , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/inmunología
10.
BMC Med ; 17(1): 125, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31286933

RESUMEN

BACKGROUND: Autoimmune diseases are often preceded by an asymptomatic autoantibody-positive phase. In type 1 diabetes, the detection of autoantibodies to pancreatic islet antigens in genetically at-risk children is prognostic for future clinical diabetes. Testing for islet autoantibodies is, therefore, performed in a range of clinical studies. Accurate risk estimates that consider the a priori genetic risk and other risk modifiers are an important component of screening. The age of an individual is an under-appreciated risk modifier. The aim of this study was to provide age-adjusted risk estimates for the development of autoantibodies across childhood in genetically at-risk children. METHODS: The prospective BABYDIAB and BABYDIET studies included 2441 children from birth who had a first-degree relative with type 1 diabetes. Children were born between 1989 and 2006 and were regularly followed from birth for the development of islet autoantibodies and diabetes. A landmark analysis was performed to estimate the risk of islet autoantibodies at birth and at the age 3.5, 6.5 and 12.5 years. Exponential decay curves were fitted for the risk by the age of 20 years. RESULTS: The risk of islet autoantibodies by the age of 20 years was 8%, 4.6%, 2.6% and 0.9%, at the landmark ages of birth, 3.5, 6.5 and 12.5 years, respectively. The short-term risks (within 6 years of follow-up) at these landmark ages were 5.3%, 2.9%, 1.8% and 1%, respectively. The decline in autoantibody risk with age was modelled using a one-phase exponential decay curve (r = 0.99) with a risk half-life of 3.7 years. This risk decay model was remarkably consistent when the outcome was defined as islet autoantibody-positive or multiple islet autoantibody-positive and when the study cohort was stratified by HLA risk genotype. A similar decay model was observed for coeliac disease-associated transglutaminase antibodies in the same cohort. Unlike the risk of developing islet autoantibodies, the rate of developing clinical diabetes in children who were islet autoantibody-positive did not decline with age. CONCLUSION: The risk of developing autoantibodies drops exponentially with age in children with a first-degree relative with type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Factores de Edad , Niño , Preescolar , Estudios de Cohortes , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Estadificación de Neoplasias , Estudios Prospectivos
11.
Front Immunol ; 10: 38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30778344

RESUMEN

Adoptive transfer of T regulatory cells (Treg) has been successfully exploited in the context of graft-versus-host disease, transplantation, and autoimmune disease. For the majority of applications, clinical administration of Treg requires laborious ex vivo expansion and typically involves open handling for culture feeds and repetitive sampling. Here we show results from our approach to translate manual Treg manufacturing to the fully closed automated CliniMACS Prodigy® system reducing contamination risk, hands-on time, and quality variation from human intervention. Polyclonal Treg were isolated from total nucleated cells obtained through leukapheresis of healthy donors by CD8+ cell depletion and subsequent CD25high enrichment. Treg were expanded with the CliniMACS Prodigy® device using clinical-grade cell culture medium, rapamycin, IL-2, and αCD3/αCD28 beads for 13-14 days. We successfully integrated expansion bead removal and final formulation into the automated procedure, finalizing the process with a ready to use product for bedside transfusion. Automated Treg expansion was conducted in parallel to an established manual manufacturing process using G-Rex cell culture flasks. We could prove similar expansion kinetics leading to a cell yield of up to 2.12 × 109 cells with the CliniMACS Prodigy® and comparable product phenotype of >90% CD4+CD25highCD127lowFOXP3+ cells that had similar in vitro immunosuppressive function. Efficiency of expansion bead depletion was comparable to the CliniMACS® Plus system and the final ready-to-infuse product had phenotype stability and high vitality after overnight storage. We anticipate this newly developed closed system expansion approach to be a starting point for the development of enhanced throughput clinical scale Treg manufacture, and for safe automated generation of antigen-specific Treg grafted with a chimeric antigen receptor (CAR Treg).


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Inmunoterapia Adoptiva , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Automatización , Biomarcadores , Separación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunofenotipificación , Inmunoterapia Adoptiva/métodos , Linfocitos T Reguladores/citología
12.
J Immunol ; 202(6): 1735-1746, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30728213

RESUMEN

Long-term survival of adoptively transferred chimeric Ag receptor (CAR) T cells is often limited. Transplantation of hematopoietic stem cells (HSCs) transduced to express CARs could help to overcome this problem as CAR-armed HSCs can continuously deliver CAR+ multicell lineages (e.g., T cells, NK cells). In dependence on the CAR construct, a variable extent of tonic signaling in CAR T cells was reported; thus, effects of CAR-mediated tonic signaling on the hematopoiesis of CAR-armed HSCs is unclear. To assess the effects of tonic signaling, two CAR constructs were established and analyzed 1) a signaling CAR inducing a solid Ag-independent tonic signaling termed CAR-28/ζ and 2) a nonstimulating control CAR construct lacking intracellular signaling domains termed CAR-Stop. Bone marrow cells from immunocompetent mice were isolated, purified for HSC-containing Lin-cKit+ cells or the Lin-cKit+ Sca-1+ subpopulation (Lin-Sca-1+cKit+), and transduced with both CAR constructs. Subsequently, modified bone marrow cells were transferred into irradiated mice, in which they successfully engrafted and differentiated into hematopoietic progenitors. HSCs expressing the CAR-Stop sustained normal hematopoiesis. In contrast, expression of the CAR-28/ζ led to elimination of mature CAR+ T and B cells, suggesting that the CAR-mediated tonic signaling mimics autorecognition via the newly recombined immune receptors in the developing lymphocytes.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Activación de Linfocitos/fisiología , Linfopoyesis/fisiología , Receptores Quiméricos de Antígenos/metabolismo , Transducción de Señal/fisiología , Traslado Adoptivo , Animales , Diferenciación Celular/fisiología , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Ratones , Ratones Endogámicos C57BL
13.
Diabetologia ; 62(5): 805-810, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30789994

RESUMEN

AIMS/HYPOTHESIS: The beta cell protein tetraspanin 7 is a target of autoantibodies in individuals with type 1 diabetes. The aim of this study was to identify autoantibody epitope-containing regions and key residues for autoantibody binding. METHODS: Autoantibody epitope regions were identified by immunoprecipitation of luciferase-tagged single or multiple tetraspanin 7 domains using tetraspanin 7 antibody-positive sera. Subsequently, amino acids (AAs) relevant for autoantibody binding were identified by single AA mutations. RESULTS: In tetraspanin 7 antibody-positive sera, antibody binding was most frequent to tetraspanin 7 proteins that contained the NH2-terminal cytoplasmic domain 1 (C1; up to 39%) or COOH-terminal C3 (up to 22%). Binding to C3 was more frequent when the domain was expressed along with the flanking transmembrane domain, suggesting that conformation is likely to be important. Binding to external domains was not observed. Single AA mutations of C3 identified residues Y246, E247 and R239 as critical for COOH-terminal binding of 9/10, 10/10 and 8/10 sera tested, respectively. Mutation of cysteines adjacent to the transmembrane domain at either residues C235 or C236 resulted in both decreased (8/178 and 15/178 individuals, respectively; >twofold decrease) and increased (30/178 and 13/178 individuals, respectively; >twofold increase) binding in participant sera vs wild-type protein. CONCLUSIONS/INTERPRETATION: We hypothesise that conformation and, potentially, modification of protein terminal ends of tetraspanin 7 may be important for autoantibody binding in type 1 diabetes.


Asunto(s)
Autoanticuerpos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Proteínas del Tejido Nervioso/inmunología , Tetraspaninas/inmunología , Adolescente , Autoantígenos/inmunología , Niño , Análisis Mutacional de ADN , Diabetes Mellitus Tipo 1/sangre , Epítopos/inmunología , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Luciferasas , Masculino , Mutación , Proteínas del Tejido Nervioso/sangre , Fosforilación , Unión Proteica , Dominios Proteicos , Tetraspaninas/sangre , Adulto Joven
15.
Arthritis Rheumatol ; 71(5): 817-828, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30511817

RESUMEN

OBJECTIVE: To identify single-cell transcriptional signatures of dendritic cells (DCs) that are associated with autoimmunity, and determine whether those DC signatures are correlated with the clinical heterogeneity of autoimmune disease. METHODS: Blood-derived DCs were single-cell sorted from the peripheral blood of patients with rheumatoid arthritis, systemic lupus erythematosus, or type 1 diabetes as well as healthy individuals. DCs were analyzed using single-cell gene expression assays, performed immediately after isolation or after in vitro stimulation of the cells. In addition, protein expression was measured using fluorescence-activated cell sorting. RESULTS: CD1c+ conventional DCs and plasmacytoid DCs from healthy individuals exhibited diverse transcriptional signatures, while the DC transcriptional signatures in patients with autoimmune disease were altered. In particular, distinct DC clusters, characterized by up-regulation of TAP1, IRF7, and IFNAR1, were abundant in patients with systemic autoimmune disease, whereas DCs from patients with type 1 diabetes had decreased expression of the regulatory genes PTPN6, TGFB, and TYROBP. The frequency of CD1c+ conventional DCs that expressed a systemic autoimmune profile directly correlated with the extent of disease activity in patients with rheumatoid arthritis (Spearman's r = 0.60, P = 0.03). CONCLUSION: DC transcriptional signatures are altered in patients with autoimmune disease and are associated with the level of disease activity, suggesting that immune cell transcriptional profiling could improve our ability to detect and understand the heterogeneity of these diseases, and could guide treatment choices in patients with a complex autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes/genética , Células Dendríticas/metabolismo , Inflamación/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Enfermedades Autoinmunes/inmunología , Estudios de Casos y Controles , Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Regulación hacia Arriba
16.
Haematologica ; 104(3): 622-631, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30262565

RESUMEN

Alloreactivity or opportunistic infections following allogeneic stem cell transplantation are difficult to predict and contribute to post-transplantation mortality. How these immune reactions result in changes to the T-cell receptor repertoire remains largely unknown. Using next-generation sequencing, the T-cell receptor alpha (TRα) repertoire of naïve and memory CD8+ T cells from 25 patients who had received different forms of allogeneic transplantation was analyzed. In parallel, reconstitution of the CD8+/CD4+ T-cell subsets was mapped using flow cytometry. When comparing the influence of anti-T-cell therapy, a delay in the reconstitution of the naïve CD8+ T-cell repertoire was observed in patients who received in vivo T-cell depletion using antithymocyte globulin or post-transplantation cyclophosphamide in case of haploidentical transplantation. Sequencing of the TRα identified a repertoire consisting of more dominant clonotypes (>1% of reads) in these patients at 6 and 18 months post transplantation. When comparing donor and recipient, approximately 50% and approximately 80% of the donors' memory repertoire were later retrieved in the naïve and memory CD8+ T-cell receptor repertoire of the recipients, respectively. Although there was a remarkable expansion of single clones observed in the recipients' memory CD8+ TRα repertoire, no clear association between graft-versus-host disease or cytomegalovirus infection and T-cell receptor diversity was identified. A lower TRα diversity was observed in recipients of a cytomegalovirus-seropositive donor (P=0.014). These findings suggest that CD8+ T-cell reconstitution in transplanted patients is influenced by the use of T-cell depletion or immunosuppression and the donor repertoire.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T CD8-positivos/inmunología , Femenino , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Memoria Inmunológica , Depleción Linfocítica , Masculino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Trasplante Homólogo
17.
Clin Immunol ; 194: 87-91, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990590

RESUMEN

Type 1 diabetes is an autoimmune disease leading to insulin deficiency. Autoantibodies to beta cell proteins are already present in the asymptomatic phase of type 1 diabetes. Recent findings have suggested a number of additional minor autoantigens in patients with type 1 diabetes. We have established luciferase immunoprecipitation systems (LIPS) for anti-MTIF3, anti-PPIL2, anti-NUP50 and anti-MLH1 and analyzed samples from 500 patients with type 1 diabetes at onset of clinical disease and 200 healthy individuals who had a family history of type 1 diabetes but no evidence of beta cell autoantibodies. We show significantly higher frequencies of anti-MTIF3, anti-PPIL2 and anti-MLH1 in recent onset type 1 diabetes patients in comparison to controls. In addition, antibodies to NUP50 were associated with HLA-DRB1*03 and antibodies to MLH1 were associated with HLA-DRB1*04 genotypes.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Cadenas beta de HLA-DQ/inmunología , Adolescente , Adulto , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Niño , Preescolar , Ciclofilinas/inmunología , Femenino , Genotipo , Humanos , Lactante , Masculino , Proteínas Mitocondriales/inmunología , Homólogo 1 de la Proteína MutL/inmunología , Adulto Joven
18.
Diabetologia ; 61(3): 641-657, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29185012

RESUMEN

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 2/metabolismo , Biología de Sistemas/métodos , Donantes de Tejidos , Transcriptoma/genética , Anciano , Anciano de 80 o más Años , Biología Computacional , Femenino , Humanos , Masculino , Pancreatectomía
19.
Horm Metab Res ; 50(1): 44-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121687

RESUMEN

An increased risk for type 1 diabetes can be identified using genetic and immune markers. The Freder1k study introduces genetic testing for type 1 diabetes risk within the context of the newborn screening in order to identify newborns with a high risk to develop type 1 diabetes for follow-up testing of early stage type 1 diabetes and for primary prevention trials. Consent for research-based genetic testing of type 1 diabetes risk is obtained with newborn screening. Increased risk is assessed using three single nucleotide polymorphisms for HLA DRB1*03 (DR3), HLA DRB1*04 (DR4), HLA DQB1*0302 (DQ8) alleles, and defined as 1. an HLA DR3/DR4-DQ8 or DR4-DQ8/DR4-DQ8 genotype or 2. an HLA DR4-DQ8 haplotype and a first-degree family history of type 1 diabetes. Families of infants with increased risk are asked to participate in follow-up visits at infant age 6 months, 2 years, and 4 years for autoantibody testing and early diagnosis of type 1 diabetes. After 8 months, the screening rate has reached 181 per week, with 63% coverage of newborns within Freder1k-clinics and 24% of all registered births in Saxony. Of 4178 screened, 2.6% were identified to have an increased risk, and around 80% of eligible infants were recruited to follow-up. Psychological assessment of eligible families is ongoing with none of 31 families demonstrating signs of excessive burden associated with knowledge of type 1 diabetes risk. This pilot study has shown that it is feasible to perform genetic risk testing for childhood disease within the context of newborn screening programs.


Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico , Tamizaje Masivo , Costo de Enfermedad , Humanos , Recién Nacido , Padres/psicología , Proyectos Piloto , Factores de Riesgo
20.
Clin Immunol ; 188: 23-30, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229565

RESUMEN

The phenotype of autoreactive T cells in type 1 diabetes is described as Th1, Th17 and/or Th21, but is largely uncharacterized. We combined multi-parameter cytokine profiling and proliferation, and identified GM-CSF producing cells as a component of the response to beta cell autoantigens proinsulin and GAD65. Overall cytokine profiles of CD4+ T cell were not altered in type 1 diabetes. In contrast, patients with recent onset type 1 diabetes had increased frequencies of proinsulin-responsive CD4+CD45RA- T cells producing GM-CSF (p=0.002), IFNγ (p=0.004), IL-17A (p=0.008), IL-21 (p=0.011), and IL-22 (p=0.007), and GAD65-responsive CD4+CD45RA- T cells producing IL-21 (p=0.039). CD4+ T cells with a GM-CSF+IFNγ-IL-17A-IL-21-IL-22- phenotype were increased in patients for responses to both proinsulin (p=0.006) and GAD65 (p=0.037). GM-CSF producing T cells are a novel phenotype in the repertoire of T helper cells in type 1 diabetes and consolidate a Th1/Th17 pro-inflammatory pathogenesis in the disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Expresión Génica/inmunología , Glutamato Descarboxilasa , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Humanos , Proinsulina/inmunología , Proinsulina/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA