Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003232

RESUMEN

Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising circulating biomarkers for chronic liver disease. In this study, we explored the potential significance of plasma EV-miRNAs in non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). We compared, using the NanoString method, plasma EV-miRNA profiles between NBNC-HCC and control groups including patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls. The differentially expressed EV-miRNAs were validated in another set of plasma samples by qRT-PCR. A total of 66 significantly differentially expressed EV-miRNAs between the HCC and the control groups were identified in the discovery set. In the validation cohort, including plasma samples of 70 NBNC-HCC patients, 70 NAFLD patients, and 35 healthy controls, 5 plasma EV-miRNAs were significantly elevated in HCC, which included miR-19-3p, miR-16-5p, miR-223-3p, miR-30d-5p, and miR-451a. These miRNAs were found to participate in several cancer-related signaling pathways based on bioinformatic analysis. Among them, EV-miR-19-3p exhibited the best diagnostic performance and displayed a high sensitivity for detecting alpha-fetoprotein-negative HCC and early-stage HCC. In multivariate analysis, a high EV-miR-19-3p level was demonstrated as an independently unfavorable predictor of overall survival in patients with NBNC-HCC. In conclusion, our data have indicated, for the first time, that EV-miR-19-3p could serve as a novel circulating biomarker for the diagnosis and prognosis of NBNC-HCC.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , MicroARNs/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Pronóstico , Biomarcadores de Tumor/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Biomarcadores
2.
Stem Cell Res Ther ; 11(1): 481, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176890

RESUMEN

BACKGROUND: Human induced pluripotent stem cells (hiPSCs) offer a renewable source of cells for the generation of hematopoietic cells for cell-based therapy, disease modeling, and drug screening. However, current serum/feeder-free differentiation protocols rely on the use of various cytokines, which makes the process very costly or the generation of embryoid bodies (EBs), which are labor-intensive and can cause heterogeneity during differentiation. Here, we report a simple feeder and serum-free monolayer protocol for efficient generation of iPSC-derived multipotent hematoendothelial progenitors (HEPs), which can further differentiate into endothelial and hematopoietic cells including erythroid and T lineages. METHODS: Formation of HEPs from iPSCs was initiated by inhibition of GSK3 signaling for 2 days followed by the addition of VEGF and FGF2 for 3 days. The HEPs were further induced toward mature endothelial cells (ECs) in an angiogenic condition and toward T cells by co-culturing with OP9-DL1 feeder cells. Endothelial-to-hematopoietic transition (EHT) of the HEPs was further promoted by supplementation with the TGF-ß signaling inhibitor. Erythroid differentiation was performed by culturing the hematopoietic stem/progenitor cells (HSPCs) in a three-stage erythroid liquid culture system. RESULTS: Our protocol significantly enhanced the number of KDR+ CD34+ CD31+ HEPs on day 5 of differentiation. Further culture of HEPs in angiogenic conditions promoted the formation of mature ECs, which expressed CD34, CD31, CD144, vWF, and ICAM-1, and could exhibit the formation of vascular-like network and acetylated low-density lipoprotein (Ac-LDL) uptake. In addition, the HEPs were differentiated into CD8+ T lymphocytes, which could be expanded up to 34-fold upon TCR stimulation. Inhibition of TGF-ß signaling at the HEP stage promoted EHT and yielded a large number of HSPCs expressing CD34 and CD43. Upon erythroid differentiation, these HSPCs were expanded up to 40-fold and displayed morphological changes following stages of erythroid development. CONCLUSION: This protocol offers an efficient and simple approach for the generation of multipotent HEPs and could be adapted to generate desired blood cells in large numbers for applications in basic research including developmental study, disease modeling, and drug screening as well as in regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Células Endoteliales , Glucógeno Sintasa Quinasa 3 , Células Madre Hematopoyéticas , Humanos
3.
Stem Cell Res ; 39: 101487, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31229899

RESUMEN

Activated T lymphocytes of a healthy individual were reprogrammed to induced pluripotent stem cells (iPSCs) using Sendai viral vectors. Two iPSC lines, MUSIi011-A and MUSIi011-B, were established and characterized for the expression of pluripotent markers. Both iPSC lines were able to differentiate into cells of three embryonic germ layers via embryoid body formation, exhibited normal karyotypes and were free of viral genome and transgenes at passage 15. These T lymphocyte-derived iPSCs (T-iPSCs) represent a useful starting cell source for developing next-generation immune cells such as chimeric antigen receptor (CAR)-engineered iPSC-derived T lymphocytes for the application in adoptive immunotherapy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Pluripotentes Inducidas/citología , Linfocitos T/citología , Trastorno del Espectro Autista , Codón sin Sentido/genética , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética
4.
Stem Cell Res ; 30: 34-37, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29778975

RESUMEN

Human induced pluripotent stem cells (iPSCs) were generated from exfoliated renal epithelial cells isolated from a urine sample of a 31-year-old healthy woman. Epithelial cells were characterized for the expression of E-cadherin and reprogrammed using non-integrating Sendai viral vectors. The urine-derived iPSC line (designated as MUSIi005-A) was karyotypically normal, expressed pluripotent markers, differentiated into cells of three embryonic germ layers, and showed no viral and transgene expressions at passage 29. Our protocol offers a non-invasive and efficient approach for iPSC generation from patients with genetic or acquired disorders.


Asunto(s)
Riñón/patología , Adulto , Diferenciación Celular , Células Cultivadas , Células Epiteliales , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA