Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Res Food Sci ; 8: 100740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694557

RESUMEN

Resveratrol is a natural phenolic compound that belongs to stilbenoid group found in diverse plants. Health benefits and therapeutic potentials of resveratrol have been widely recognized in various diseases. In kidney stone disease, it can alleviate oxalate-induced hyperproduction of free radicals in renal epithelial cells. Nevertheless, its direct effects on calcium oxalate (CaOx) crystal, which is the major stone component, remained unclear. This study therefore addressed the direct effects of resveratrol (at 1, 10 or 100 µM) on each step of CaOx kidney stone formation. The results revealed that resveratrol had no significant effects on CaOx crystallization. However, resveratrol significantly decreased CaOx crystal growth and adhesion to renal epithelial cells at all concentrations, and induced crystal internalization into the cells (a process related to crystal degradation by endolysosomes) in a concentration-dependent manner. On the other hand, resveratrol promoted crystal aggregation. These data indicate that resveratrol serves as a dual modulator on CaOx stone formation. While it inhibits CaOx stone development by reducing crystal growth and adhesion to renal cells and by inducing crystal internalization into the cells, resveratrol promotes crystal aggregation, which is one of the mechanisms leading to kidney stone formation.

2.
Exp Hematol Oncol ; 11(1): 62, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36154899

RESUMEN

Increasing evidence of association between kidney stone disease (KSD) and renal cell carcinoma (RCC) has been reported. Nevertheless, mechanism underlying such association remained unknown. Herein, we investigated the effects of calcium oxalate monohydrate (COM), a major crystalline component causing KSD, on induction of carcinogenic features in non-cancerous renal cells. COM crystals induced morphological changes from epithelial to fibroblast-like spindle shape. Additionally, COM increased spindle index and mesenchymal markers (fibronectin and vimentin) but declined epithelial markers (E-cadherin and zonula occludens-1). Moreover, COM down-regulated ARID1A, a tumor suppressor gene recently reported to be reversely associated with RCC, at both mRNA and protein levels. COM also down-regulated other RCC-related tumor suppressor genes, PTEN and VHL, but up-regulated oncogene TPX2. Finally, COM enhanced invading capability, cell-aggregate formation, chemoresistance to cisplatin, and secretion of an angiogenic factor (VEGF). These data indicate that COM crystals trigger epithelial-mesenchymal transition (EMT) and several carcinogenic features in the non-cancerous renal cells. These mechanisms may explain and strengthen the association between KSD and RCC.

3.
Biomed Pharmacother ; 149: 112876, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367760

RESUMEN

Trigonelline is the second most abundant bioactive alkaloid found in coffee. It is classified as a phytoestrogen with similar structure as of estradiol and exhibits an estrogenic effect. A previous study has reported that fenugreek seed extract rich with trigonelline can reduce renal crystal deposition in ethylene glycol-induced nephrolithiatic rats. However, direct evidence of such anti-lithogenic effects of trigonelline and underlying mechanisms have not previously been reported. Our study therefore addressed the protective effects and mechanisms of trigonelline against kidney stone-forming processes using crystallization, crystal growth, aggregation and crystal-cell adhesion assays. Also, proteomics was applied to identify changes in receptors for calcium oxalate monohydrate (COM), the most common stone-forming crystal, on apical membranes of trigonelline-treated renal tubular cells. The analyses revealed that trigonelline significantly reduced COM crystal size, number and mass during crystallization. Additionally, trigonelline dose-dependently inhibited crystal growth and crystal-cell adhesion, but did not affect crystal aggregation. Mass spectrometric protein identification showed the smaller number of COM crystal receptors on apical membranes of the trigonelline-treated cells. Western blotting confirmed the decreased levels of some of these crystal receptors by trigonelline. These data highlight the protective mechanisms of trigonelline against kidney stone development by inhibiting COM crystallization, crystal growth and crystal-cell adhesion via downregulation of the crystal receptors on apical membranes of renal tubular cells.


Asunto(s)
Alcaloides , Cálculos Renales , Alcaloides/farmacología , Animales , Oxalato de Calcio/química , Proteínas Portadoras , Adhesión Celular , Cristalización , Cálculos Renales/prevención & control , Ratas
4.
J Cancer ; 13(2): 373-384, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069887

RESUMEN

Loss of ARID1A, a tumor suppressor gene, is associated with the higher grade of colorectal cancer (CRC). However, molecular and cellular mechanisms underlying the progression and aggressiveness of CRC induced by the loss of ARID1A remain poorly understood. Herein, we evaluated cellular mechanisms underlying the effects of ARID1A knockdown on the carcinogenesis features and aggressiveness of CRC cells. A human CRC cell line (Caco-2) was transfected with small interfering RNA (siRNA) specific to ARID1A (siARID1A) or scrambled (non-specific) siRNA (siControl). Cell death, proliferation, senescence, chemoresistance and invasion were then evaluated. In addition, formation of polyploid giant cancer cells (PGCCs), self-aggregation (multicellular spheroid) and secretion of an angiogenic factor, vascular endothelial growth factor (VEGF), were examined. The results showed that ARID1A knockdown led to significant decreases in cell death and senescence. On the other hand, ARID1A knockdown enhanced cell proliferation, chemoresistance and invasion. The siARID1A-transfected cells also had greater number of PGCCs and larger spheroid size and secreted greater level of VEGF compared with the siControl-transfected cells. These data, at least in part, explain the cellular mechanisms of ARID1A deficiency in carcinogenesis and aggressiveness features of CRC.

5.
FASEB J ; 33(11): 12226-12239, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424966

RESUMEN

Down-regulation/mutation of AT-rich interactive domain 1A (ARID1A), a novel tumor suppressor gene, has been reported in various cancers. Nevertheless, its role in renal cell carcinoma (RCC) remained unclear and underinvestigated. We thus evaluated carcinogenesis effects of ARID1A knockdown in nonmalignant Madin-Darby canine kidney (MDCK) renal cells using small interfering RNA (siRNA) against ARID1A (siARID1A). The siARID1A-transfected cells had decreased cell death, increased cell proliferation, and cell cycle shift (from G0/G1 to G2/M) compared with those transfected with controlled siRNA (siControl). Additionally, the siARID1A-transfected cells exhibited epithelial-mesenchymal transition (EMT) shown by greater spindle index, increased mesenchymal markers (fibronectin/vimentin), and decreased epithelial markers (E-cadherin/zonula occludens-1). Moreover, the siARID1A-transfected cells had increases in migratory activity, nuclear size, self-aggregated multicellular spheroid size, invasion capability, chemoresistance (to docetaxel), Snail family transcriptional repressor 1 expression, and TGF-ß1 secretion. All of these siARID1A-knockdown effects on the carcinogenic features were reproducible in malignant RCC (786-O) cells, which exhibited a higher degree of carcinogenic phenotypes compared with the nonmalignant MDCK cells. Finally, immunohistochemistry showed obvious decrease in ARID1A protein expression in human RCC tissues (n = 23) compared with adjacent normal renal tissues (n = 23). These data indicate that ARID1A down-regulation triggers EMT and carcinogenesis features of renal cells in vitro, and its role in RCC could be proven in human tissues.-Somsuan, K., Peerapen, P., Boonmark, W., Plumworasawat, S., Samol, R., Sakulsak, N., Thongboonkerd, V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma.


Asunto(s)
Carcinogénesis , Carcinoma de Células Renales/patología , Proteínas de Unión al ADN/fisiología , Transición Epitelial-Mesenquimal , Neoplasias Renales/patología , Factores de Transcripción/fisiología , Animales , Carcinoma de Células Renales/etiología , Proteínas de Unión al ADN/antagonistas & inhibidores , Perros , Humanos , Neoplasias Renales/etiología , Células de Riñón Canino Madin Darby , Factores de Transcripción de la Familia Snail/fisiología , Factores de Transcripción/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA