Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biology (Basel) ; 13(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39056711

RESUMEN

The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer's disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aß). Toxic Aß oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain. In the present study, we investigated the effects of Hup A on amyloid precursor protein (APP) proteolysis in SH-SY5Y neuroblastoma cells. Hup A downregulated the expression of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) levels but augmented the levels of A disintegrin and metalloproteinase 10 (ADAM10) with significant decrement in the Aß levels. We herein report for the first time an in silico molecular docking analysis that revealed that Hup A binds to the functionally active site of BACE1. We further analyzed the effect of Hup A on glycogen synthase kinase-3 ß (GSK3ß) and phosphorylation status of tau. In this scenario, based on the current observations, we propose that Hup A is a potent regulator of APP processing and capable of modulating tau homeostasis under physiological conditions holding immense potential in preventing and treating AD like disorders.

2.
Neurochem Res ; 47(9): 2568-2579, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33713326

RESUMEN

Diabetes mellitus (DM), one of metabolic diseases, has been suggested as a risk factor for Alzheimer's disease (AD). However, how the metabolic pathway activates amyloid precursor protein (APP) processing enzymes then contributes to the increase of amyloid-beta (Aß) production, is not clearly understood. In the present study, we aimed to examine the protective effect of melatonin against hyperglycemia-induced alterations in the amyloidogenic pathway. High concentration of glucose was used to induce hyperglycemia in human neuroblastoma SH-SY5Y cells. We found that 30 mM glucose affected the expression of insulin receptors and glucose transporters, which indicated the disruption of glucose sensing. High glucose induced the activation of the phosphorylated protein kinase B (pAkt)/GSK-3ß signaling pathway and a significant increase in the expression of ß-site beta APP cleaving enzyme (BACE1), presenilin1 (PS1) and Aß42. Pretreatment with melatonin significantly reversed these parameters. We also showed that these effects are similar to those effects in the presence of the GSK-3ß blocker, N-(4-methoxybenyl)-N'-(5-nitro-1,3-thiazol-2-yl) urea (ARA) in glucose-treated hyperglycemic cells. These suggested that melatonin exerted an inhibitory effect on the activation of APP-cleaving enzymes via the GSK-3ß signaling pathway. Pretreatment with luzindole, a melatonin receptor MT1 antagonist, significantly prevented the effect of melatonin on the glucose-induced increase level of APP processing enzymes. This suggested that melatonin attenuated the toxic effect on hyperglycemia involving the amyloidogenic pathway partially mediated via melatonin receptor. Taken together the present results suggested that melatonin has a beneficial role in preventing Aß generation in a cellular model of hyperglycemia-induced DM.


Asunto(s)
Enfermedad de Alzheimer , Hiperglucemia , Melatonina , Neuroblastoma , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular Tumoral , Glucosa/toxicidad , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hiperglucemia/tratamiento farmacológico , Melatonina/farmacología , Neuroblastoma/metabolismo , Receptores de Melatonina/metabolismo
3.
EXCLI J ; 17: 634-646, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108467

RESUMEN

Aging is often accompanied by a decline in cognitive function in conjunction with a variety of neurobiological changes, including neuroinflammation. Melatonin is a key endogenous indoleamine secreted by the pineal gland that plays a crucial role in the regulation of circadian rhythms, is a potent free radical scavenger, has anti-inflammatory activity and serves numerous other functions. However, the role of melatonin in sterile inflammation in the brain has not been fully investigated. In the present study, we investigated the neuroinflammation status in aged mouse brains. The results showed that the protein levels of integrin αM (CD11b), glial fibrillary acidic protein (GFAP), the major pro-inflammatory cytokines (interleukin-1 beta [IL-1ß], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and phosphor-nuclear factor kappa B (pNFκB) were significantly increased, while N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and brain-derived neurotrophic factor (BDNF) were down-regulated in the hippocampus and prefrontal cortex (PFC) of 22-months-old (aged) mice compared with 2-months-old (young adult) mice. Melatonin was administered in the drinking water to a cohort of the aged mice at a dose of 10 mg/kg/day, beginning at an age of 16 months for 6 months. Our results revealed that melatonin significantly attenuated the alterations in these protein levels. The present study suggests an advantageous role for melatonin in anti-inflammation, and this may lead to the prevention of memory impairment in aging.

4.
EXCLI J ; 16: 340-353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507478

RESUMEN

Sirtuin1 (SIRT1) and forkhead box transcription factor O subfamily 1 (FOXO1) play vital roles in the maintenance of hippocampal neuronal homeostasis during aging. Our previous study showed that melatonin, a hormone mainly secreted by the pineal gland, restored the impaired memory of aged mice. Age-related neuronal energy deficits contribute to the pathogenesis of several neurodegenerative disorders. An attempt has been made to determine whether the effect of melatonin is mediated through the SIRT1-FOXO1 pathways. The present results showed that aged mice (22 months old) exhibited significantly downregulated SIRT1, FOXO1, and melatonin receptors MT1 and MT2 protein expression but upregulated tumor suppressor protein 53 (p53), acetyl-p53 protein (Ac-p53), mouse double minute 2 homolog (MDM2), Dickkopf-1 (DKK1) protein expression in mouse hippocampus compared with the young group. Melatonin treatment (10 mg/kg, daily in drinking water for 6 months) in aged mice significantly attenuated the age-induced downregulation of SIRT1, FOXO1, MT1 and MT2 protein expression and attenuated the age-induced increase in p53, ac-p53, MDM2, and DKK1 protein and mRNA expression. Melatonin decreased p53 and MDM2 expression, which led to a decrease in FOXO1 degradation. These present results suggest that melatonin may help the hippocampal neuronal homeostasis by increasing SIRT1, FOXO1 and melatonin receptors expression while decreasing DKK1 expression in the aging hippocampus. DKK1 can be induced by the accumulation of amyloid ß (Aß) which is the major hallmark of Alzheimer's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA