Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Biol ; 31(6): 1206-1220.e5, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33609453

RESUMEN

The centrosome is the main organizer of microtubules and as such, its position is a key determinant of polarized cell functions. As the name says, the default position of the centrosome is considered to be the cell geometrical center. However, the mechanism regulating centrosome positioning is still unclear and often confused with the mechanism regulating the position of the nucleus to which it is linked. Here, we used enucleated cells plated on adhesive micropatterns to impose regular and precise geometrical conditions to centrosome-microtubule networks. Although frequently observed there, the equilibrium position of the centrosome is not systematically at the cell geometrical center and can be close to cell edge. Centrosome positioning appears to respond accurately to the architecture and anisotropy of the actin network, which constitutes, rather than cell shape, the actual spatial boundary conditions the microtubule network is sensitive to. We found that the contraction of the actin network defines a peripheral margin in which microtubules appear bent by compressive forces. The progressive disassembly of the actin network at distance from the cell edges defines an inner zone where actin bundles were absent, where microtubules were more radially organized and where dynein concentration was higher. We further showed that the production of dynein-based forces on microtubules places the centrosome at the center of this zone. In conclusion, the spatial distribution of cell adhesion and the production of contractile forces define the architecture of the actin network with respect to which the centrosome-microtubule network is centered.


Asunto(s)
Actinas , Centrosoma , Dineínas , Miosinas , Actinas/metabolismo , Centrosoma/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Miosinas/metabolismo
2.
PLoS Biol ; 13(3): e1002087, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25764135

RESUMEN

Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.


Asunto(s)
Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microtúbulos/genética , Morfogénesis/genética , Proteínas Nucleares/genética , alfa Catenina/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/ultraestructura , Adipocitos/citología , Adipocitos/metabolismo , Animales , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular , Polaridad Celular , Forma de la Célula , Perros , Embrión no Mamífero , Células Epiteliales/citología , Vectores Genéticos , Humanos , Lentivirus/genética , Células de Riñón Canino Madin Darby , Proteínas de Microtúbulos/antagonistas & inhibidores , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oryzias , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos , alfa Catenina/metabolismo
3.
J Cell Biol ; 198(6): 1011-23, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22965908

RESUMEN

Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA-Rho kinase-myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear-centrosomal orientation and lumen initiation during 3D epithelial morphogenesis.


Asunto(s)
Comunicación Celular/fisiología , Centrosoma/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Laminina/metabolismo , Morfogénesis/fisiología , Actinas/metabolismo , Animales , División Celular/fisiología , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Polaridad Celular/fisiología , Células Cultivadas , Centrosoma/metabolismo , Colágeno/metabolismo , Perros , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Invasividad Neoplásica/fisiopatología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
4.
J Cell Biol ; 193(5): 917-33, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21606206

RESUMEN

Mammalian cells exhibit a frequent pericentrosomal Golgi ribbon organization. In this paper, we show that two AKAP450 N-terminal fragments, both containing the Golgi-binding GM130-interacting domain of AKAP450, dissociated endogenous AKAP450 from the Golgi and inhibited microtubule (MT) nucleation at the Golgi without interfering with centrosomal activity. These two fragments had, however, strikingly different effects on both Golgi apparatus (GA) integrity and positioning, whereas the short fragment induced GA circularization and ribbon fragmentation, the large construct that encompasses an additional p150glued/MT-binding domain induced separation of the Golgi ribbon from the centrosome. These distinct phenotypes arose by specific interference of each fragment with either Golgi-dependent or centrosome-dependent stages of Golgi assembly. We could thus demonstrate that breaking the polarity axis by perturbing GA positioning has a more dramatic effect on directional cell migration than disrupting the Golgi ribbon. Both features, however, were required for ciliogenesis. We thus identified AKAP450 as a key determinant of pericentrosomal Golgi ribbon integrity, positioning, and function in mammalian cells.


Asunto(s)
Movimiento Celular , Centrosoma/metabolismo , Cilios/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Humanos , Microtúbulos/metabolismo
5.
Dev Dyn ; 240(3): 723-36, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337470

RESUMEN

We describe the localization of the golgin GMAP210 and the intraflagellar protein IFT88 in the Golgi of spermatids and the participation of these two proteins in the development of the acrosome-acroplaxome complex, the head-tail coupling apparatus (HTCA) and the spermatid tail. Immunocytochemical experiments show that GMAP210 predominates in the cis-Golgi, whereas IFT88 prevails in the trans-Golgi network. Both proteins colocalize in proacrosomal vesicles, along acrosome membranes, the HTCA and the developing tail. IFT88 persists in the acrosome-acroplaxome region of the sperm head, whereas GMAP210 is no longer seen there. Spermatids of the Ift88 mouse mutant display abnormal head shaping and are tail-less. GMAP210 is visualized in the Ift88 mutant during acrosome-acroplaxome biogenesis. However, GMAP210-stained vesicles, mitochondria and outer dense fiber material build up in the manchette region and fail to reach the abortive tail stump in the mutant. In vitro disruption of the spermatid Golgi and microtubules with Brefeldin-A and nocodazole blocks the progression of GMAP210- and IFT88-stained proacrosomal vesicles to the acrosome-acroplaxome complex but F-actin distribution in the acroplaxome is not affected. We provide the first evidence that IFT88 is present in the Golgi of spermatids, that the microtubule-associated golgin GMAP210 and IFT88 participate in acrosome, HTCA, and tail biogenesis, and that defective intramanchette transport of cargos disrupts spermatid tail development.


Asunto(s)
Acrosoma/metabolismo , Aparato de Golgi/metabolismo , Proteínas Nucleares/metabolismo , Espermátides/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Acrosoma/ultraestructura , Actinas/metabolismo , Animales , Brefeldino A/farmacología , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente Indirecta , Aparato de Golgi/ultraestructura , Immunoblotting , Inmunohistoquímica , Masculino , Ratones , Microscopía Electrónica , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Nocodazol/farmacología , Proteínas Nucleares/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermátides/ultraestructura , Proteínas Supresoras de Tumor/genética
6.
J Cell Biol ; 185(1): 101-14, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19349582

RESUMEN

Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.


Asunto(s)
Proteínas Portadoras/fisiología , Centriolos/metabolismo , Fosfoproteínas/fisiología , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Centriolos/ultraestructura , Secuencia Conservada , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Fase S , Alineación de Secuencia , Proteína p53 Supresora de Tumor/metabolismo
7.
EMBO J ; 28(8): 1016-28, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19242490

RESUMEN

We report that microtubule (MT) nucleation at the Golgi apparatus requires AKAP450, a centrosomal gamma-TuRC-interacting protein that also forms a distinct network associated with the Golgi. Depletion of AKAP450 abolished MT nucleation at the Golgi, whereas depletion of the cis-Golgi protein GM130 led to the disorganisation of AKAP450 network and impairment of MT nucleation. Brefeldin-A treatment induced relocalisation of AKAP450 to ER exit sites and concomitant redistribution of MT nucleation capacity to the ER. AKAP450 specifically binds the cis-side of the Golgi in an MT-independent, GM130-dependent manner. Short AKAP450-dependent growing MTs are covered by CLASP2. Like for centrosome, dynein/dynactin complexes are necessary to anchor MTs growing from the Golgi. We further show that Golgi-associated AKAP450 has a role in cell migration rather than in cell polarisation of the centrosome-Golgi apparatus. We propose that the recruitment of AKAP450 on the Golgi membranes through GM130 allows centrosome-associated nucleating activity to extend to the Golgi, to control the assembly of subsets of MTs ensuring specific functions within the Golgi or for transporting specific cargos to the cell periphery.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Autoantígenos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Autoantígenos/genética , Brefeldino A/metabolismo , Línea Celular , Movimiento Celular/fisiología , Centrosoma/metabolismo , Proteínas del Citoesqueleto/genética , Complejo Dinactina , Dineínas/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/citología , Células Epiteliales/fisiología , Humanos , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Epitelio Pigmentado de la Retina/citología
8.
J Cell Sci ; 120(Pt 18): 3299-308, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17878239

RESUMEN

A comprehensive model of how the centrosome organises the microtubule network in animal cells has not yet been elucidated. Here we show that the centrosomal large CAP-Gly protein CAP350 is not only present at the centrosome, but is also present as numerous dots in the pericentrosomal area. Using in vitro and in vivo expression of partial constructs, we demonstrated that CAP350 binds microtubules through an N-terminal basic region rather than through its CAP-Gly domain. CAP-Gly-containing domains of CAP350 are targeted not only to the centrosome but also to a Golgi-like network. Interestingly, full-length GFP-tagged CAP350 bound preferentially to microtubules in the pericentrosomal area. These results indicate that the large CAP350 protein has a dual binding ability. Overexpression of CAP350 promoted an increase in the stability of the whole microtubule network, as judged by a significant decrease in the number of EB1 comets and by an enhanced microtubule resistance to Nocodazole treatment. In support of this, CAP350 depletion decreased microtubule stability. Moreover, both depletion and overexpression of CAP350 induced specific fragmentation of the Golgi complex while maintaining a juxtanuclear localisation. We propose that CAP350 specifically stabilises Golgi-associated microtubules and in this way participates in the maintenance of a continuous pericentrosomal Golgi ribbon.


Asunto(s)
Centrosoma/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Antineoplásicos/farmacología , Perros , Resistencia a Medicamentos/genética , Expresión Génica/genética , Aparato de Golgi/genética , Células HeLa , Humanos , Proteínas de Microtúbulos/genética , Microtúbulos/genética , Nocodazol/farmacología , Proteínas Nucleares/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética
9.
Curr Biol ; 17(8): 694-9, 2007 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-17379524

RESUMEN

Cell adhesion and motility depend strongly on the interactions between cells and extracellular matrix (ECM) substrates. When plated onto artificial adhesive surfaces, cells first flatten and deform extensively as they spread. At the molecular level, the interaction of membrane-based integrins with the ECM has been shown to initiate a complex cascade of signaling events [1], which subsequently triggers cellular morphological changes and results in the generation of contractile forces [2]. Here, we focus on the early stages of cell spreading and probe their dynamics by quantitative visualization and biochemical manipulation with a variety of cell types and adhesive surfaces, adhesion receptors, and cytoskeleton-altering drugs. We find that the dynamics of adhesion follows a universal power-law behavior. This is in sharp contrast with the common belief that spreading is regulated by either the diffusion of adhesion receptors toward the growing adhesive patch [3-5] or by actin polymerization [6-8]. To explain this, we propose a simple quantitative and predictive theory that models cells as viscous adhesive cortical shells enclosing a less viscous interior. Thus, although cell spreading is driven by well-identified biomolecular interactions, it is dynamically limited by its mesoscopic structure and material properties.


Asunto(s)
Movimiento Celular/fisiología , Microscopía de Interferencia , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Citoesqueleto/fisiología , Células HeLa , Humanos , Ratones
10.
J Cell Biol ; 174(6): 839-49, 2006 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-16954346

RESUMEN

Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Animales , Células Cultivadas , Complejo Dinactina , Fibroblastos/ultraestructura , Interfase/fisiología , Ratones , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Polímeros/metabolismo , Estructura Terciaria de Proteína/fisiología , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
11.
Trends Cell Biol ; 16(1): 5-10, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16325405

RESUMEN

Tight regulation of the contractility of the actomyosin cortex is essential for proper cell locomotion and division. Enhanced contractility leads, for example, to aberrations in the positioning of the mitotic spindle or to anomalous migration modes that allow tumor cells to escape anti-dissemination treatments. Spherical membrane protrusions called blebs occasionally appear during cell migration, cell division or apoptosis. We have shown that the cortex ruptures at sites where actomyosin cortical contractility is increased, leading to the formation of blebs. Here, we propose that bleb formation, which releases cortical tension, can be used as a reporter of cortical contractility. We go on to analyze the implications of spontaneous cortical contractile behaviors on cell locomotion and division and we particularly emphasize that variations in actomyosin contractility can account for a variety of migration modes.


Asunto(s)
Actomiosina/análisis , Actomiosina/fisiología , División Celular/fisiología , Movimiento Celular/fisiología , Citoplasma/química , Actomiosina/ultraestructura , Animales , Membrana Celular/química , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Polaridad Celular , Proteínas Contráctiles/análisis , Proteínas Contráctiles/fisiología , Proteínas Contráctiles/ultraestructura , Citocinesis , Citoplasma/ultraestructura , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/fisiología , Proteínas del Citoesqueleto/ultraestructura , Citoesqueleto/química , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Geles , Humanos
12.
J Neurosci ; 25(24): 5691-9, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15958735

RESUMEN

During rodent cortex development, cells born in the medial ganglionic eminence (MGE) of the basal telencephalon reach the embryonic cortex by tangential migration and differentiate as interneurons. Migrating MGE cells exhibit a saltatory progression of the nucleus and continuously extend and retract branches in their neuritic arbor. We have analyzed the migration cycle of these neurons using in vitro models. We show that the nucleokinesis in MGE cells comprises two phases. First, cytoplasmic organelles migrate forward, and second, the nucleus translocates toward these organelles. During the first phase, a large swelling that contains the centrosome and the Golgi apparatus separates from the perinuclear compartment and moves rostrally into the leading neurite, up to 30 mum from the waiting nucleus. This long-distance migration is associated with a splitting of the centrioles that line up along a linear Golgi apparatus. It is followed by the second, dynamic phase of nuclear translocation toward the displaced centrosome and Golgi apparatus. The forward movement of the nucleus is blocked by blebbistatin, a specific inhibitor of nonmuscle myosin II. Because myosin II accumulates at the rear of migrating MGE cells, actomyosin contraction likely plays a prominent role to drive forward translocations of the nucleus toward the centrosome. During this phase of nuclear translocation, the leading growth cone either stops migrating or divides, showing a tight correlation between leading edge movements and nuclear movements.


Asunto(s)
Movimiento Celular/fisiología , Centrosoma/fisiología , Aparato de Golgi/fisiología , Miosinas/fisiología , Neuronas/fisiología , Prosencéfalo/fisiología , Animales , Centrosoma/ultraestructura , Técnicas de Cocultivo , Cruzamientos Genéticos , Femenino , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Transgénicos , Miosina Tipo II/fisiología , Neuronas/citología , Técnicas de Cultivo de Órganos
13.
Biophys J ; 89(1): 724-33, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15879479

RESUMEN

Cell shape and movements rely on complex biochemical pathways that regulate actin, microtubules, and substrate adhesions. Some of these pathways act through altering the cortex contractility. Here we examined cellular systems where contractility is enhanced by disassembly of the microtubules. We found that adherent cells, when detached from their substrate, developed a membrane bulge devoid of detectable actin and myosin. A constriction ring at the base of the bulge oscillated from one side of the cell to the other. The movement was accompanied by sequential redistribution of actin and myosin to the membrane. We observed this oscillatory behavior also in cell fragments of various sizes, providing a simplified, nucleus-free system for biophysical studies. Our observations suggest a mechanism based on active gel dynamics and inspired by symmetry breaking of actin gels growing around beads. The proposed mechanism for breakage of the actomyosin cortex may be used for cell polarization.


Asunto(s)
Actomiosina/química , Biofisica/métodos , Actinas/química , Animales , Antineoplásicos/farmacología , Bioquímica/métodos , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Forma de la Célula , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Microscopía por Video , Modelos Biológicos , Modelos Estadísticos , Miosinas/química , Nocodazol/farmacología , Oscilometría , Ósmosis , Polietilenglicoles/química , Factores de Tiempo , Transfección
14.
Biol Cell ; 97(6): 425-34, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15898952

RESUMEN

BACKGROUND INFORMATION: Centrosome movements at the onset of mitosis result from a balance between the pulling and pushing forces mediated by microtubules. The structural stability of the centrosome core structure, the centriole pair, is correlated with a heavy polyglutamylation of centriole tubulin. RESULTS: Using HeLa cells stably expressing centrin-green fluorescent protein as a centriole marker, we monitored the effect of microinjecting an anti-(polyglutamylated tubulin) monoclonal antibody, GT335, in G1/S or G2 cells. In contrast with the slow effect of the monoclonal antibody GT335 during interphase, a dramatic and rapid centrosome fragmentation occurred in cells microinjected in G2 that was both Eg5- and dynein-dependent. Inhibition of either one of these two motors significantly decreased the scattering of centrosome fragments, and inhibition of centrosome segregation by impairing microtubule dynamics abolished centrosome fragmentation. CONCLUSIONS: Our results demonstrate that the compact structure of the mitotic centrosome is capable of absorbing most of the pulling and pushing forces during G2/M transition and suggest that centrosomes could act as mechanosensors integrating tensions during cell division.


Asunto(s)
Centriolos/ultraestructura , Anticuerpos Monoclonales/química , Ciclo Celular , División Celular , Centriolos/metabolismo , Centrosoma/metabolismo , Centrosoma/ultraestructura , Dineínas/metabolismo , Fase G1 , Fase G2 , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microscopía Fluorescente , Microscopía por Video , Modelos Biológicos , Proteínas Motoras Moleculares , Péptidos/química , Fase S , Factores de Tiempo , Tubulina (Proteína)/química
15.
Genome Res ; 15(3): 376-84, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15710747

RESUMEN

The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animales , Secuencia de Bases , ADN Complementario/genética , Proteínas de Drosophila/química , Biblioteca de Genes , Genes de Insecto , Genes ras , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Especificidad de la Especie , Técnicas del Sistema de Dos Híbridos
16.
Mol Biol Cell ; 14(10): 4260-71, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14517334

RESUMEN

The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of gamma-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not gamma-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Proteínas de Anclaje a la Quinasa A , Antígenos/metabolismo , Fraccionamiento Celular , Clonación Molecular , Ácidos Grasos Insaturados/farmacología , Técnica del Anticuerpo Fluorescente , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Microscopía Inmunoelectrónica , Modelos Moleculares , Transporte de Proteínas , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Tubulina (Proteína)/metabolismo , Células Tumorales Cultivadas
17.
Mol Biol Cell ; 14(6): 2436-46, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12808041

RESUMEN

Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Centriolos/metabolismo , Proteínas del Citoesqueleto , Proteínas de Anclaje a la Quinasa A , Proteínas Portadoras/biosíntesis , División Celular , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Poliploidía , Estructura Terciaria de Proteína
18.
J Cell Biol ; 159(5): 731-7, 2002 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-12473683

RESUMEN

In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration.


Asunto(s)
Movimiento Celular , Centrosoma/fisiología , Microtúbulos/fisiología , Animales , Línea Celular , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Complejo Dinactina , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Proteínas de Unión al GTP/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Indicadores y Reactivos , Cinética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía por Video/métodos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Nocodazol/farmacología , Proteínas Nucleares , Piel/citología , Factores de Tiempo , Células Tumorales Cultivadas
19.
Traffic ; 3(11): 822-32, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12383348

RESUMEN

Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis-Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83-98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis/medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas , Fosfatasa Alcalina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Proteínas del Citoesqueleto , Resistencia a Medicamentos , Endopeptidasas/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/ultraestructura , Células HeLa , Glicoproteínas Hemaglutininas del Virus de la Influenza/efectos de los fármacos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Cinética , Proteínas Nucleares , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Toxina Shiga/química , Toxina Shiga/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA