Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Med Phys ; 48(7): 3991-4003, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33964020

RESUMEN

PURPOSE: Microwave ablation (MWA) is a clinically established modality for treatment of lung tumors. A challenge with existing application of MWA, however, is local tumor progression, potentially due to failure to establish an adequate treatment margin. This study presents a robust simulation-based treatment planning methodology to assist operators in comparatively assessing thermal profiles and likelihood of achieving a specified minimum margin as a function of candidate applied energy parameters. METHODS: We employed a biophysical simulation-based probabilistic treatment planning methodology to evaluate the likelihood of achieving a specified minimum margin for candidate treatment parameters (i.e., applied power and ablation duration for a given applicator position within a tumor). A set of simulations with varying tissue properties was evaluated for each considered combination of power and ablation duration, and for four different scenarios of contrast in tissue biophysical properties between tumor and normal lung. A treatment planning graph was then assembled, where distributions of achieved minimum ablation zone margins and collateral damage volumes can be assessed for candidate applied power and treatment duration combinations. For each chosen power and time combination, the operator can also visualize the histogram of ablation zone boundaries overlaid on the tumor and target volumes. We assembled treatment planning graphs for generic 1, 2, and 2.5 cm diameter spherically shaped tumors and also illustrated the impact of tissue heterogeneity on delivered treatment plans and resulting ablation histograms. Finally, we illustrated the treatment planning methodology on two example patient-specific cases of tumors with irregular shapes. RESULTS: The assembled treatment planning graphs indicate that 30 W, 6 min ablations achieve a 5-mm minimum margin across all simulated cases for 1-cm diameter spherical tumors, and 70 W, 10 min ablations achieve a 3-mm minimum margin across 90% of simulations for a 2.5-cm diameter spherical tumor. Different scenarios of tissue heterogeneity between tumor and lung tissue revealed 2 min overall difference in ablation duration, in order to reliably achieve a 4-mm minimum margin or larger each time for 2-cm diameter spherical tumor. CONCLUSIONS: An approach for simulation-based treatment planning for microwave ablation of lung tumors is illustrated to account for the impact of specific geometry of the treatment site, tissue property uncertainty, and heterogeneity between the tumor and normal lung.


Asunto(s)
Técnicas de Ablación , Ablación por Catéter , Neoplasias Pulmonares , Ablación por Radiofrecuencia , Simulación por Computador , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/cirugía , Microondas/uso terapéutico
2.
ERJ Open Res ; 6(4)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33083442

RESUMEN

BACKGROUND: Percutaneous microwave ablation is clinically used for inoperable lung tumour treatment. Delivery of microwave ablation applicators to tumour sites within lung parenchyma under virtual bronchoscopy guidance may enable ablation with reduced risk of pneumothorax, providing a minimally invasive treatment of early-stage tumours, which are increasingly detected with computed tomography (CT) screening. The objective of this study was to integrate a custom microwave ablation platform, incorporating a flexible applicator, with a clinically established virtual bronchoscopy guidance system, and to assess technical feasibility for safely creating localised thermal ablations in porcine lungs in vivo. METHODS: Pre-ablation CTs of normal pigs were acquired to create a virtual model of the lungs, including airways and significant blood vessels. Virtual bronchoscopy-guided microwave ablation procedures were performed with 24-32 W power (at the applicator distal tip) delivered for 5-10 mins. A total of eight ablations were performed in three pigs. Post-treatment CT images were acquired to assess the extent of damage and ablation zones were further evaluated with viability stains and histopathologic analysis. RESULTS: The flexible microwave applicators were delivered to ablation sites within lung parenchyma 5-24 mm from the airway wall via a tunnel created under virtual bronchoscopy guidance. No pneumothorax or significant airway bleeding was observed. The ablation short axis observed on gross pathology ranged 16.5-23.5 mm and 14-26 mm on CT imaging. CONCLUSION: We have demonstrated the technical feasibility for safely delivering microwave ablation in the lung parenchyma under virtual bronchoscopic guidance in an in vivo porcine lung model.

3.
Int J Hyperthermia ; 33(1): 51-60, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27380439

RESUMEN

PURPOSE: Microwave ablation (MWA) applicators capable of creating directional heating patterns offer the potential of simplifying treatment of targets in proximity to critical structures and avoiding the need for piercing the tumour volume. This work reports on improved directional MWA antennas with the objectives of minimising device diameter for percutaneous use (≤ ∼13 gauge) and yielding larger ablation zones. METHODS: Two directional MWA antenna designs, with a modified monopole radiating element and spherical and parabolic reflectors are proposed. A 3D-coupled electromagnetic heat transfer with temperature-dependent material properties was implemented to characterise MWA at 40 and 77 W, for 5 and 10 min. Simulations were also used to assess antenna impedance matching within liver, kidney, lung, bone and brain tissue. The two antenna designs were fabricated and experimentally evaluated with ablations in ex vivo tissue at the two power levels and treatment durations (n = 5 repetitions for each group). RESULTS: The computed specific absorption rate (SAR) patterns for both antennas were similar, although simulations indicated slightly greater forward penetration for the parabolic antenna. Based on simulations for antennas inserted within different tissues, the proposed antenna design appears to offer good impedance matching for a variety of tissue types. Experiments in ex vivo tissue showed radial ablation depths of 19 ± 0.9 mm in the forward direction for the applicator with spherical reflector and 18.7 ± 0.7 mm for the applicator with parabolic reflector. CONCLUSION: These results suggest the applicator may be suitable for creating localised directional ablation zones for treating small and medium-sized targets with a percutaneous approach.


Asunto(s)
Técnicas de Ablación/instrumentación , Diseño de Equipo , Microondas , Animales , Huesos/cirugía , Encéfalo/cirugía , Bovinos , Riñón/cirugía , Hígado/cirugía , Pulmón/cirugía , Modelos Teóricos , Músculos/cirugía , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA