Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Autoimmun ; 145: 103189, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442677

RESUMEN

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Asunto(s)
Artritis Reumatoide , Diferenciación Celular , Células Dendríticas , MicroARNs , Osteoclastos , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , MicroARNs/genética , Receptor Toll-Like 8/metabolismo , Osteoclastos/metabolismo , Osteoclastos/inmunología , Animales , Receptor Toll-Like 7/metabolismo , Ratones , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Células Cultivadas , Femenino , Masculino
2.
Front Immunol ; 15: 1360291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504978

RESUMEN

Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.


Asunto(s)
Interferón Tipo I , Neoplasias , Humanos , Citocinas , Transducción de Señal , Neoplasias/terapia , Células Dendríticas , Microambiente Tumoral
3.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473215

RESUMEN

Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.

4.
Cancer Immunol Res ; 11(9): 1280-1295, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343073

RESUMEN

Patterns of receptors for chemotactic factors regulate the homing of leukocytes to tissues. Here we report that the CCRL2/chemerin/CMKLR1 axis represents a selective pathway for the homing of natural killer (NK) cells to the lung. C-C motif chemokine receptor-like 2 (CCRL2) is a nonsignaling seven-transmembrane domain receptor able to control lung tumor growth. CCRL2 constitutive or conditional endothelial cell targeted ablation, or deletion of its ligand chemerin, were found to promote tumor progression in a Kras/p53Flox lung cancer cell model. This phenotype was dependent on the reduced recruitment of CD27- CD11b+ mature NK cells. Other chemotactic receptors identified in lung-infiltrating NK cells by single-cell RNA sequencing (scRNA-seq), such as Cxcr3, Cx3cr1, and S1pr5, were found to be dispensable in the regulation of NK-cell infiltration of the lung and lung tumor growth. scRNA-seq identified CCRL2 as the hallmark of general alveolar lung capillary endothelial cells. CCRL2 expression was epigenetically regulated in lung endothelium and it was upregulated by the demethylating agent 5-aza-2'-deoxycytidine (5-Aza). In vivo administration of low doses of 5-Aza induced CCRL2 upregulation, increased recruitment of NK cells, and reduced lung tumor growth. These results identify CCRL2 as an NK-cell lung homing molecule that has the potential to be exploited to promote NK cell-mediated lung immune surveillance.


Asunto(s)
Neoplasias Pulmonares , Receptores CCR , Humanos , Receptores CCR/genética , Células Endoteliales , Pulmón , Células Asesinas Naturales/metabolismo
5.
Cancer Immunol Immunother ; 72(9): 3097-3110, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356050

RESUMEN

Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies.


Asunto(s)
Neoplasias , Infecciones por Papillomavirus , Femenino , Humanos , Animales , Ratones , Virus del Papiloma Humano , Cisplatino/farmacología , Infecciones por Papillomavirus/complicaciones , Apoptosis , Células Asesinas Naturales
6.
Cell Mol Immunol ; 20(5): 432-447, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949244

RESUMEN

Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.


Asunto(s)
Células Dendríticas , Neoplasias , Humanos , Antígenos de Neoplasias , Linfocitos T , Microambiente Tumoral
7.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36077149

RESUMEN

Histone deacetylase inhibitors (HDIs) are promising drugs for the treatment of inflammatory diseases. However, their therapeutical exploitation is slowed down by severe adverse manifestations that can hardly be foreseen, mainly due to incomplete knowledge of how HDIs impact the delicate balance of inflammatory mediators. In this work, we characterized the effects of the HDI trichostatin A (TSA) on the expression of TNFAIP3, which is a crucial inhibitor of the classical NF-kB pathway and an LPS-induced negative feedback regulator. The accumulation of TNFAIP3 mRNA after LPS stimulation showed biphasic behavior, with one wave within the first hour of stimulation and a second wave several hours later, which were both reduced by TSA. By using inhibition and knockdown approaches, we identified two temporally and mechanistically distinct modes of action. The first wave of TNAIP3 accumulation was directly blunted by the histone deacetylase (HDAC) blockade. By contrast, the second wave was decreased mainly because of the lack of endogenous TNF-α induction, which, in turn, depended on the intact HDAC activity. In both cases, class I HDACs appeared to play a nonredundant role, with HDAC3 required, but not sufficient, for TNF-α and TNFAIP3 induction. In addition to TNFAIP3, TNF-α is known to induce many response genes that orchestrate the inflammatory cascade. Thus, suppression of TNF-α may represent a general mechanism through which HDIs regulate a selected set of target genes.


Asunto(s)
Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Histona Desacetilasa 1 , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563373

RESUMEN

Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide-a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.


Asunto(s)
Neutrófilos , Enfermedad Pulmonar Obstructiva Crónica , Sulfonamidas , para-Aminobenzoatos , Citocinas/metabolismo , Células Endoteliales/metabolismo , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/patología , Sulfonamidas/uso terapéutico , para-Aminobenzoatos/uso terapéutico
9.
Clin Genitourin Cancer ; 19(4): 316-324, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33676835

RESUMEN

BACKGROUND: Cisplatin-based chemotherapy is the mainstay of pharmacological treatment of testicular germ cell tumors (TGCTs) that, together with early diagnosis, surgery, and/or radiotherapy, has dramatically improved the prognosis. However, under the pressure of such pharmacological therapy (both classical cytotoxic drugs and targeted therapy), cancer cells may develop resistance. Thus, combination therapy that may include cytotoxic drugs and targeted therapy could offer an advantage to curing cancers. Here, we investigated the in vitro and in vivo antitumor activity of cisplatin, as a single-agent or in combination with palbociclib. PATIENTS AND METHODS: The cell viability of Ntera-2/cl.D1 (NT2/D1) and 833K after exposure to palbociclib and/or cisplatin was evaluated by MTT dye reduction assay and by ATPLite Luminescence Assay. Gene and protein expression was evaluated by quantitative reverse transcription polymerase chain reaction and by western blot. Flow cytometric cell-cycle analysis was performed, as well. The in vivo experiments were conducted on NT2/D1 xenografts in AB zebrafish embryos exposed to the drugs. RESULTS: Palbociclib and cisplatin decreased TGCT cell viability both in vitro and in vivo. This effect was additive when cells were exposed to the drug combination. In the NT2/D1 cell lines, the drug combination also exerted a positive effect with regard to delaying cell recovery after the toxic insult. In the combination experiments, cisplatin-induced cell accumulation in G2/M was predominant compared with the palbociclib effect. CONCLUSIONS: These results could provide the rationale for developing further studies to improve the pharmacological treatment of TGCTs, but they must be demonstrated in a dedicated clinical trial.


Asunto(s)
Antineoplásicos , Neoplasias Testiculares , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Quinasa 4 Dependiente de la Ciclina , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias , Piperazinas , Piridinas , Neoplasias Testiculares/tratamiento farmacológico , Pez Cebra
10.
Front Immunol ; 12: 797390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140709

RESUMEN

Phosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel, potent and selective inhaled PDE4 inhibitor in advanced clinical development for the treatment of COPD. To begin testing its potential in limiting hyperinflammation and immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an in vitro model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-RNA). In this context, Tanimilast decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CCL3, CXCL9, and CXCL10) and of Th1-polarizing cytokines (IL-12, type I IFNs). In contrast to ß-methasone, a reference steroid anti-inflammatory drug, Tanimilast did not impair the acquisition of the maturation markers CD83, CD86 and MHC-II, nor that of the lymph node homing receptor CCR7. Consistent with this, Tanimilast did not reduce the capability of SCV2-RNA-stimulated DCs to activate CD4+ T cells but skewed their polarization towards a Th2 phenotype. Both Tanimilast and ß-methasone blocked the increase of MHC-I molecules in SCV2-RNA-activated DCs and restrained the proliferation and activation of cytotoxic CD8+ T cells. Our results indicate that Tanimilast can modulate the SCV2-RNA-induced pro-inflammatory and Th1-polarizing potential of DCs, crucial regulators of both the inflammatory and immune response. Given also the remarkable safety demonstrated by Tanimilast, up to now, in clinical studies, we propose this inhaled PDE4 inhibitor as a promising immunomodulatory drug in the scenario of COVID-19.


Asunto(s)
COVID-19/inmunología , Células Dendríticas , Inhibidores de Fosfodiesterasa 4/farmacología , ARN/farmacología , SARS-CoV-2/fisiología , Activación Viral/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Células TH1/inmunología , Células Th2/inmunología , Activación Viral/inmunología , Tratamiento Farmacológico de COVID-19
11.
Front Cell Dev Biol ; 8: 615031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363177

RESUMEN

CCRL2 is a seven-transmembrane domain receptor that belongs to the chemokine receptor family. At difference from other members of this family, CCRL2 does not promote chemotaxis and shares structural features with atypical chemokine receptors (ACKRs). However, CCRL2 also differs from ACKRs since it does not bind chemokines and is devoid of scavenging functions. The only commonly recognized CCRL2 ligand is chemerin, a non-chemokine chemotactic protein. CCRL2 is expressed both by leukocytes and non-hematopoietic cells. The genetic ablation of CCRL2 has been instrumental to elucidate the role of this receptor as positive or negative regulator of inflammation. CCRL2 modulates leukocyte migration by two main mechanisms. First, when CCRL2 is expressed by barrier cells, such endothelial, and epithelial cells, it acts as a presenting molecule, contributing to the formation of a non-soluble chemotactic gradient for leukocytes expressing CMKLR1, the functional chemerin receptor. This mechanism was shown to be crucial in the induction of NK cell-dependent immune surveillance in lung cancer progression and metastasis. Second, by forming heterocomplexes with other chemokine receptors. For instance, CCRL2/CXCR2 heterodimers were shown to regulate the activation of ß2-integrins in mouse neutrophils. This mini-review summarizes the current understanding of CCRL2 biology, based on experimental evidence obtained by the genetic deletion of this receptor in in vivo experimental models. Further studies are required to highlight the complex functional role of CCRL2 in different organs and pathological conditions.

12.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486257

RESUMEN

Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.


Asunto(s)
Células Dendríticas/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos/farmacología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular , Quimiocinas/inmunología , Citocinas/inmunología , Progresión de la Enfermedad , Homeostasis , Humanos , Inmunofenotipificación , Inmunosupresores/farmacología , Inmunoterapia , Ratones , Neoplasias/inmunología , Pronóstico , Resultado del Tratamiento , Microambiente Tumoral
13.
Mol Cell Endocrinol ; 498: 110585, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536779

RESUMEN

Adrenocortical cancer (ACC) is a rare and aggressive malignancy with a poor prognosis. The overall 5-year survival rate of patients with ENS@T stage IV ACC is less than 15%. Systemic antineoplastic therapies have a limited efficacy and new drugs are urgently needed. Human ACC primary cultures and cell lines were used to assess the cytotoxic effect of cabazitaxel, and the role of P-glycoprotein in mediating this effect. Cabazitaxel reduced ACC cell viability, both in ACC cell lines and in ACC primary cell cultures. Molecular and pharmacological targeting of ABCB1/P-gp did not modify its cytotoxic effect in NCI-H295R cells, while it increased the paclitaxel-induced toxicity. Cabazitaxel modified the expression of proteins involved in cellular physiology, such as apoptosis and cell cycle regulation. The drug combination cabazitaxel/mitotane exerted an additive/moderate synergism in different ACC cell experimental models. These results provide a rationale for testing cabazitaxel in a clinical study.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/patología , Carcinoma Corticosuprarrenal/patología , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Recurrencia Local de Neoplasia/patología , Taxoides/farmacología , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/metabolismo , Adulto , Anciano , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Cultivo Primario de Células , Células Tumorales Cultivadas
14.
Cancer Lett ; 452: 59-65, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30910591

RESUMEN

Since the discovery of the existence of microRNAs (miRNAs) in body fluids, the fascinating hypothesis that extracellular miRNAs may play a role in cell-to-cell signalling started to make its own way. In this review, we summarize the current knowledge that supports the role of miRNAs in the regulation of the immune response by an unconventional mechanism based on the activation of intracellular innate immune sensors of nucleic acids, namely the Toll-like receptors (TLRs). Such a mechanism of action has been now described to amplify and influence the pathogenesis of several inflammation-dependent pathological conditions, including cancer growth and metastasis, neurodegeneration, autoimmunity and cardiovascular diseases. The available data suggest that we have only begun to touch upon a complex system that is likely to involve many receptors and molecules. These findings may help to understand the pathogenesis of immune-mediated diseases and provide the basis for the identification of new potential therapeutic targets.


Asunto(s)
Inmunidad Innata , Inflamación/metabolismo , MicroARNs/metabolismo , Receptores Toll-Like/metabolismo , Animales , Comunicación Celular , Humanos , Inflamación/genética , Inflamación/inmunología , Ligandos , MicroARNs/genética , MicroARNs/inmunología , Transducción de Señal , Receptores Toll-Like/inmunología
15.
Endocrine ; 63(3): 592-601, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30367443

RESUMEN

PURPOSE: The management of patients with adrenocortical carcinoma (ACC) is challenging. As mitotane and chemotherapy show limited efficacy, there is an urgent need to develop therapeutic approaches. The aim of this study was to investigate the antitumor activity of progesterone and explore the molecular mechanisms underlying its cytotoxic effects in the NCI-H295R cell line and primary cell cultures derived from ACC patients. METHODS: Cell viability, cell cycle, and apoptosis were analyzed in untreated and progesterone-treated ACC cells. The ability of progesterone to affect the Wnt/ß-catenin pathway in NCI-H295R cells was investigated by immunofluorescence. Progesterone and mitotane combination experiments were also performed to evaluate their interaction on NCI-H295R cell viability. RESULTS: We demonstrated that progesterone exerted a concentration-dependent inhibition of ACC cell viability. Apoptosis was the main mechanism, as demonstrated by a significant increase of apoptosis and cleaved-Caspase-3 levels. Reduction of ß-catenin nuclear translocation may contribute to the progesterone cytotoxic effect. The progesterone antineoplastic activity was synergically increased when mitotane was added to the cell culture medium. CONCLUSIONS: Our results show that progesterone has antineoplastic activity in ACC cells. The synergistic cytotoxic activity of progesterone with mitotane provides the rationale for testing this combination in a clinical study.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Progesterona/uso terapéutico , Progestinas/uso terapéutico , Neoplasias de la Corteza Suprarrenal/metabolismo , Carcinoma Corticosuprarrenal/metabolismo , Antineoplásicos Hormonales/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Proteínas de la Membrana/metabolismo , Mitotano/uso terapéutico , Cultivo Primario de Células , Progesterona/farmacología , Progestinas/farmacología , Receptores de Progesterona/metabolismo , beta Catenina/metabolismo
16.
Curr Opin Immunol ; 53: 180-186, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879585

RESUMEN

Lymph node (LN) expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Human dendritic cells (DCs), subdivided into two main subsets, namely conventional DCs (cDCs) and plasmacytoid DCs (pDCs), are professional antigen presenting cells endowed with the capability to produce soluble mediators regulating inflammation and tissue repair. cDCs support angiogenesis in secondary LNs both directly and indirectly through the secretion of vascular endothelial growth factor-A (VEGF)-A and VEGF-C and the production of several other mediators endowed with angiogenic properties. Finally, cDCs can affect neovascular formation via a transdifferentiation process. At variance with cDCs, the angiogenic properties of pDCs still remain poorly explored.


Asunto(s)
Células Dendríticas/inmunología , Linfangiogénesis/inmunología , Neovascularización Patológica/inmunología , Animales , Transdiferenciación Celular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo
17.
Cell Mol Immunol ; 15(4): 346-352, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29563613

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells responsible for the activation of specific T-cell responses and for the development of immune tolerance. Immature DCs reside in peripheral tissues and specialize in antigen capture, whereas mature DCs reside mostly in the secondary lymphoid organs where they act as antigen-presenting cells. The correct localization of DCs is strictly regulated by a large variety of chemotactic and nonchemotactic signals that include bacterial products, DAMPs (danger-associated molecular patterns), complement proteins, lipids, and chemokines. These signals function both individually and in concert, generating a complex regulatory network. This network is regulated at multiple levels through different strategies, such as synergistic interactions, proteolytic processing, and the actions of atypical chemokine receptors. Understanding this complex scenario will help to clarify the role of DCs in different pathological conditions, such as autoimmune diseases and cancers and will uncover new molecular targets for therapeutic interventions.


Asunto(s)
Movimiento Celular , Quimiocinas/metabolismo , Quimiotaxis , Células Dendríticas/citología , Animales , Células Dendríticas/metabolismo , Humanos , Receptores de Quimiocina/metabolismo , Transducción de Señal
19.
RNA Biol ; 14(11): 1580-1591, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28640668

RESUMEN

The fragile X syndrome (FXS), the most common form of inherited intellectual disability, is due to the absence of FMRP, a protein regulating RNA metabolism. Recently, an unexpected function of FMRP in modulating the activity of Adenosine Deaminase Acting on RNA (ADAR) enzymes has been reported both in Drosophila and Zebrafish. ADARs are RNA-binding proteins that increase transcriptional complexity through a post-transcriptional mechanism called RNA editing. To evaluate the ADAR2-FMRP interaction in mammals we analyzed several RNA editing re-coding sites in the fmr1 knockout (KO) mice. Ex vivo and in vitro analysis revealed that absence of FMRP leads to an increase in the editing levels of brain specific mRNAs, indicating that FMRP might act as an inhibitor of editing activity. Proximity Ligation Assay (PLA) in mouse primary cortical neurons and in non-neuronal cells revealed that ADAR2 and FMRP co-localize in the nucleus. The ADAR2-FMRP co-localization was further observed by double-immunogold Electron Microscopy (EM) in the hippocampus. Moreover, ADAR2-FMRP interaction appeared to be RNA independent. Because changes in the editing pattern are associated with neuropsychiatric and neurodevelopmental disorders, we propose that the increased editing observed in the fmr1-KO mice might contribute to the FXS molecular phenotypes.


Asunto(s)
Adenosina Desaminasa/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Edición de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Adenosina Desaminasa/metabolismo , Animales , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Eliminación de Gen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/patología , Fenotipo , Cultivo Primario de Células , Unión Proteica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Oncotarget ; 7(26): 39256-39269, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27256980

RESUMEN

Lymph node expansion during inflammation is essential to establish immune responses and relies on the development of blood and lymph vessels. Previous work in mice has shown that this process depends on the presence of VEGF-A produced by B cells, macrophages and stromal cells. In humans, however, the cell types and the mechanisms regulating the intranodal production of VEGF-A remain elusive. Here we show that CD11c+ cells represent the main VEGF-A-producing cell population in human reactive secondary lymphoid organs. In addition we find that three transcription factors, namely CREB, HIF-1α and STAT3, regulate the expression of VEGF-A in inflamed DCs. Both HIF-1α and STAT3 are activated by inflammatory agonists. Conversely, CREB phosphorylation represents the critical contribution of endogenous or exogenous PGE2. Taken together, these results propose a crucial role for DCs in lymph node inflammatory angiogenesis and identify novel potential cellular and molecular targets to limit inflammation in chronic diseases and tumors.


Asunto(s)
Antígeno CD11c/metabolismo , Células Dendríticas/metabolismo , Ganglios Linfáticos/metabolismo , Neovascularización Patológica , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunoprecipitación , Inflamación , Ligandos , Macrófagos/metabolismo , Ratones , Monocitos/citología , Células Mieloides/metabolismo , Fosforilación , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA