Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 7: 11314, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27066907

RESUMEN

FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.


Asunto(s)
Antiinflamatorios/metabolismo , Colitis/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Colitis/genética , Colitis/patología , Sulfato de Dextran , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Fagocitosis/efectos de los fármacos , Proteínas/química , Proteínas/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Regulación hacia Arriba/efectos de los fármacos
2.
Cell ; 150(2): 366-76, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22796012

RESUMEN

Brown fat generates heat via the mitochondrial uncoupling protein UCP1, defending against hypothermia and obesity. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here, we report the isolation of "beige" cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but, like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we provide evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes. These data provide a foundation for studying this mammalian cell type with therapeutic potential. PAPERCLIP:


Asunto(s)
Adipocitos/clasificación , Adipocitos/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Separación Celular , Perfilación de la Expresión Génica , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 1
3.
Diabetes ; 59(8): 1870-8, 2010 08.
Artículo en Inglés | MEDLINE | ID: mdl-20460426

RESUMEN

OBJECTIVE: Our previous studies suggest that the SNARE protein synaptosomal-associated protein of 23 kDa (SNAP23) is involved in the link between increased lipid levels and insulin resistance in cardiomyocytes. The objective was to determine whether SNAP23 may also be involved in the known association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control subjects for expression (mRNA and protein) and intracellular localization (subcellular fractionation and immunohistochemistry) of SNAP23, and for expression of proteins known to interact with SNARE proteins. Insulin resistance was determined by a euglycemic hyperinsulinemic clamp. Potential mechanisms for regulation of SNAP23 were also investigated in the skeletal muscle cell line L6. RESULTS: We showed increased SNAP23 levels in skeletal muscle from patients with type 2 diabetes compared with that from lean control subjects. Moreover, SNAP23 was redistributed from the plasma membrane to the microsomal/cytosolic compartment in the patients with the type 2 diabetes. Expression of the SNARE-interacting protein Munc18c was higher in skeletal muscle from patients with type 2 diabetes. Studies in L6 cells showed that Munc18c promoted the expression of SNAP23. CONCLUSIONS: We have translated our previous in vitro results into humans by showing that there is a change in the distribution of SNAP23 to the interior of the cell in skeletal muscle from patients with type 2 diabetes. We also showed that Munc18c is a potential regulator of SNAP23.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/genética , Proteínas Munc18/metabolismo , Músculo Esquelético/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Biopsia , Glucemia/metabolismo , Citosol/metabolismo , Ambiente , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Humanos , Microsomas Hepáticos/metabolismo , Proteínas Munc18/genética , Músculo Esquelético/citología , Músculo Esquelético/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Valores de Referencia , Gemelos Monocigóticos
4.
Arterioscler Thromb Vasc Biol ; 26(8): 1871-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16741148

RESUMEN

OBJECTIVE: Atherosclerotic lesions have regions that are hypoxic. Because the lesion contains macrophages that are loaded with lipid, we investigated whether hypoxia can influence the accumulation of lipids in these cells. METHODS AND RESULTS: Exposure of human macrophages to hypoxia for 24 hours resulted in an increased formation of cytosolic lipid droplets and an increased accumulation of triglycerides. Exposure of the macrophages to oxidized low-density lipoprotein (oxLDL) increased the accumulation of cytosolic lipid droplets because of an increase in cellular cholesterol esters. The accumulation of lipid droplets in oxLDL-treated cells was further increased after hypoxia, caused by an increased level of triglycerides. Expression analyses combined with immunoblot or RT-PCR demonstrated that hypoxia increased the expression of several genes that could promote the accumulation of lipid droplets. Hypoxia increased the mRNA and protein levels of adipocyte differentiation-related protein (ADRP). It is well known that an increased expression of ADRP increases the formation of lipid droplets. Hypoxia decreased the expression of enzymes involved in beta-oxidation (acyl-coenzyme A synthetase and acyl-coenzyme A dehydrogenase) and increased the expression of stearoyl-coenzyme A desaturase, an important enzyme in the fatty acid biosynthesis. Moreover, exposure to hypoxia decreased the rate of beta-oxidation, whereas the accumulation of triglycerides increased. CONCLUSIONS: The results demonstrate that exposure of human macrophages to hypoxia causes an accumulation of triglyceride-containing cytosolic lipid droplets. This indicates that the hypoxia present in atherosclerotic lesions can contribute to the formation of the lipid-loaded macrophages that characterize the lesion and to the accumulation of triglycerides in such lesions.


Asunto(s)
Células Espumosas/metabolismo , Células Espumosas/patología , Hipoxia/metabolismo , Hipoxia/patología , Metabolismo de los Lípidos , Macrófagos/metabolismo , Triglicéridos/metabolismo , Acil-CoA Deshidrogenasa/antagonistas & inhibidores , Células Cultivadas , Coenzima A Ligasas/antagonistas & inhibidores , Citosol/metabolismo , Humanos , Immunoblotting , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas LDL/farmacología , Macrófagos/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Perilipina-2 , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estearoil-CoA Desaturasa/metabolismo , Factores de Tiempo
5.
J Cell Sci ; 119(Pt 11): 2246-57, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16723731

RESUMEN

We have previously uncovered roles for phospholipase D (PLD) and an unknown cytosolic protein in the formation of cytosolic lipid droplets using a cell-free system. In this report, PLD1 has been identified as the relevant isoform, and extracellular signal-regulated kinase 2 (ERK2) as the cytosolic protein. Increased expression of PLD1 increased lipid droplet formation whereas knockdown of PLD1 using siRNA was inhibitory. A role for ERK2 in basal lipid droplet formation was revealed by overexpression or microinjection, and ablation by siRNA knockdown or pharmacological inhibition. Similar manipulations of other Map kinases such as ERK1, JNK1 or JNK2 and p38alpha or p38beta were without effect. Insulin stimulated the formation of lipid droplets and this stimulation was inhibited by knockdown of PLD1 (by siRNA) and by inhibition or knockdown (by siRNA) of ERK2. Inhibition of ERK2 eliminated the effect of PLD1 on lipid droplet formation without affecting PLD1 activity, suggesting that PLD1 functions upstream of ERK2. ERK2 increased the phosphorylation of dynein which increased the amount of the protein on ADRP-containing lipid droplets. Microinjection of antibodies to dynein strongly inhibited the formation of lipid droplets, demonstrating that dynein has a central role in this formation. Thus dynein is a possible target for ERK2.


Asunto(s)
Citosol/metabolismo , Lípidos/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfolipasa D/metabolismo , Animales , Anticuerpos/farmacología , Células Cultivadas , Citosol/efectos de los fármacos , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Células 3T3 NIH , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/biosíntesis , Fosforilación , ARN Interferente Pequeño/farmacología
6.
Arterioscler Thromb Vasc Biol ; 26(7): 1566-71, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16627799

RESUMEN

OBJECTIVE: We investigated the role of adipocyte differentiation-related protein (ADRP) in triglyceride turnover and in the secretion of very low-density lipoprotein (VLDL) from McA-RH7777 cells and primary rat hepatocytes. METHODS AND RESULTS: An increase in the expression of ADRP increased triglyceride accumulation in cytosolic lipid droplets and prevented the incorporation of fatty acids into secretable triglycerides, thereby reducing the secretion of triglycerides as well as of apolipoprotein B-100 (apoB-100) and apoB-48 VLDL. The ability of ADRP to block the secretion of apoB-100 VLDL1 decreased with increasing quantities of fatty acids in the medium, indicating a saturable process and emphasizing the importance of sequestering of fatty acids for the effect of ADRP on VLDL secretion. Knockdown (small interfering RNA) of ADRP decreased the pool of cytosolic lipid droplets but increased only the secretion of apoB-48 VLDL1. Additionally, there was an increased flow of fatty acids into beta-oxidation. CONCLUSIONS: ADRP is essential for the accumulation of triglycerides in cytosolic lipid droplets. An increase in ADRP prevents the formation of VLDL by diverting fatty acids from the VLDL assembly pathway into cytosolic triglycerides, whereas a decrease of the protein increases the sorting of fatty acids to beta-oxidation and promotes the secretion of apoB-48 VLDL1.


Asunto(s)
Citosol/metabolismo , Ácidos Grasos/metabolismo , Lipoproteínas VLDL/antagonistas & inhibidores , Proteínas de la Membrana/fisiología , Triglicéridos/metabolismo , Animales , Apolipoproteína B-48 , Apolipoproteínas B/metabolismo , Línea Celular Tumoral , Técnicas de Transferencia de Gen , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas VLDL/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacología , Oxidación-Reducción/efectos de los fármacos , Perilipina-2 , ARN Interferente Pequeño/farmacología , Ratas
7.
Arterioscler Thromb Vasc Biol ; 25(9): 1945-51, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16051877

RESUMEN

OBJECTIVE: Adipocyte differentiation-related protein (ADRP)-containing lipid droplets have an essential role in the development of insulin resistance and atherosclerosis. Such droplets form in a cell-free system with a diameter of 0.1 to 0.4 microm, while the droplets present in cells vary in size, from small to very large, suggesting that the droplets can increase in size after being assembled. We have addressed this possibility. METHODS AND RESULTS: Experiments in NIH 3T3 cells demonstrated that the lipid droplets could increase in size independently of triglyceride biosynthesis. NIH 3T3 cells were either microinjected with ADRP-GFP (green fluorescent protein) or stained with Nile Red and followed by confocal microscopy and time-lapse recordings. The results showed that lipid droplets formed complexes with each other, with a volume equal to the sum of the merging particles. The formation of complexes could be inhibited by the nocodazole-induced depolymerization of the microtubules; thus, the process is dependent on microtubules. The presence of dynein on ADRP-containing droplets supports a role for this motor protein. CONCLUSIONS: Lipid droplets can grow after they have been assembled. This increase in size is independent of triglyceride biosynthesis and involves formation of complexes, which requires intact microtubules.


Asunto(s)
Metabolismo de los Lípidos , Microtúbulos/metabolismo , Ácido Oléico/farmacocinética , Animales , Antineoplásicos/farmacología , Aterosclerosis/metabolismo , Citosol/metabolismo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/farmacología , Proteínas de la Membrana/farmacología , Ratones , Microtúbulos/efectos de los fármacos , Proteínas Motoras Moleculares/metabolismo , Células 3T3 NIH , Nocodazol/farmacología , Ácido Oléico/química , Oxazinas , Tamaño de la Partícula , Perilipina-2 , Triglicéridos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA