Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer Med ; 10(22): 8138-8150, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34729943

RESUMEN

The colony stimulating factor 2 receptor subunit beta (CSF2RB) is the common signaling subunit of the cytokine receptors for IL-3, IL-5, and GM-CSF. Several studies have shown that spontaneous and random mutants of CSF2RB can lead to ligand independence in vitro. To date, no report(s) have been shown for the presence of potentially transforming and oncogenic CSF2RB mutation(s) clinically in cancer patients until the first reported case of a leukemia patient in 2016 harboring a germline-activating mutation (R461C). We combined exome sequencing, pathway analyses, and functional assays to identify novel somatic mutations in KAIMRC1 cells and breast tumor specimen. The patient's peripheral blood mononuclear cell (PBMC) exome served as a germline control in the identification of somatic mutations. Here, we report the discovery of a novel potentially transforming and oncogenic somatic mutation (S230I) in the CSF2RB gene of a breast cancer patient and the cell line, KAIMRC1 established from her breast tumor tissue. KAIMRC1 cells are immortalized and shown to survive and proliferate in ligand starvation condition. Immunoblot analysis showed that mutant CSF2RB signals through JAK2/STAT and PI3K/mTOR pathways in ligand starvation conditions. Screening a small molecule kinase inhibitor library revealed potent JAK2 inhibitors against KAIMRC1 cells. We, for the first time, identified a somatic, potentially transforming, and oncogenic CSF2RB mutation (S230I) in breast cancer patients that seem to be an actionable mutation leading to the development of new therapeutics for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Subunidad beta Común de los Receptores de Citocinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Mutación de Línea Germinal , Humanos
2.
MethodsX ; 8: 101521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754792

RESUMEN

Biological samples usually require cumbersome preparation steps before SEM imaging. Here we propose a simple, fast and inexpensive method to prepare and visualize biological cell culture samples in a few easy steps. We have tested this method with success on several adherent breast cancer and non-adherent leukemia cell lines. This method gives results comparable to other well-established techniques, and it can be convenient in day-to-day biological sample preparation for SEM imaging.•An easy and rapid method to visualize biological specimens under SEM.•Cells are grown on carbon tapes and gold coated.•Air drying without compromising the image quality.

3.
Cells ; 10(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073849

RESUMEN

In vitro studies of a disease are key to any in vivo investigation in understanding the disease and developing new therapy regimens. Immortalized cancer cell lines are the best and easiest model for studying cancer in vitro. Here, we report the establishment of a naturally immortalized highly tumorigenic and triple-negative breast cancer cell line, KAIMRC2. This cell line is derived from a Saudi Arabian female breast cancer patient with invasive ductal carcinoma. Immunocytochemistry showed a significant ratio of the KAIMRC2 cells' expressing key breast epithelial and cancer stem cells (CSCs) markers, including CD47, CD133, CD49f, CD44, and ALDH-1A1. Gene and protein expression analysis showed overexpression of ABC transporter and AKT-PI3Kinase as well as JAK/STAT signaling pathways. In contrast, the absence of the tumor suppressor genes p53 and p73 may explain their high proliferative index. The mice model also confirmed the tumorigenic potential of the KAIMRC2 cell line, and drug tolerance studies revealed few very potent candidates. Our results confirmed an aggressive phenotype with metastatic potential and cancer stem cell-like characteristics of the KAIMR2 cell line. Furthermore, we have also presented potent small molecule inhibitors, especially Ryuvidine, that can be further developed, alone or in synergy with other potent inhibitors, to target multiple cancer-related pathways.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Adulto , Línea Celular Tumoral , Femenino , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
4.
Front Oncol ; 11: 579488, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123769

RESUMEN

Drug repositioning is a promising and powerful innovative strategy in the field of drug discovery. In this study, we screened a compound-library containing 800 Food and Drug Administration approved drugs for their anti-leukemic effect. All screening activities made use of human peripheral blood mononuclear cells (PBMCs), isolated from healthy or leukemic donors. Compounds with confirmed cytotoxicity were selected and classified in three groups: i) anti-neoplastic compounds which are drugs used in leukemia treatment, ii) compounds known to have an anti-cancer effect and iii) compounds demonstrating an anti-leukemic potential for the first time. The latter group was the most interesting from a drug repositioning perspective and yielded a single compound, namely Isoprenaline which is a non-selective ß-adrenergic agonist. Analysis of the cytotoxic effect of this drug indicated that it induces sustainable intracellular ATP depletion leading, over time, to necrotic cell death. We exploited the Isoprenaline-induced intracellular ATP depletion to sensitize primary leukemic cells to fludarabine (purine analogue) and Ibrutinib (Bruton's tyrosine kinase inhibitor) treatment. In-vitro treatment of primary leukemic cells with a combination of Isoprenaline/fludarabine or Isoprenaline/Ibrutinib showed a very high synergistic effect. These combinations could constitute a new efficient regimen for CLL treatment following successful evaluation in animal models and clinical trials.

5.
Pharmaceutics ; 13(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33920033

RESUMEN

This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70-120 m2/g and Vpore = 0.25-0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics.

6.
Front Mol Biosci ; 8: 769030, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004846

RESUMEN

Three-dimensional (3D) cell culture systems have become very popular in the field of drug screening and discovery. There is an immense demand for highly efficient and easy methods to produce 3D spheroids in any cell format. We have developed a novel and easy method to produce spheroids from the newly isolated KAIMRC1 cell line in vitro. It can be used as a 3D model to study proliferation, differentiation, cell death, and drug response of cancer cells. Our procedure requires growth media supplemented with 10% new born calf serum (NBCS) and regular cell culture plates to generate KAIMRC1 spheroids without the need for any specialized 3D cell culture system. This procedure generates multiple spheroids within a 12-24-h culture. KAIMRC1 spheroids are compact, homogeneous in size and morphology with a mean size of 55.8 µm (±3.5). High content imaging (HCI) of KAIMRC1 spheroids treated with a panel of 240 compounds resulted in the identification of several highly specific compounds towards spheroids. Immunophenotyping of KAIMRC1 spheroids revealed phosphorylation of FAK, cJUN, and E-cadherin, which suggests the involvement of JNK/JUN pathway in the KAIMRC1 spheroids formation. Gene expression analysis showed upregulation of cell junction genes, GJB3, DSC1, CLDN5, CLDN8, and PLAU. Furthermore, co-culture of KAIMRC1 cells with primary cancer-associated-fibroblasts (CAFs) showcased the potential of these cells in drug discovery application.

7.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570693

RESUMEN

Proteomics characterization of KAIMRC1 cell line, a naturally immortalized breast cancer cells, is described in comparison to MCF-7 and MDA-MB-231 breast cancer cells. Quantitative proteomics analysis using the tandem mass tag (TMT)-labeled technique in conjunction with the phosphopeptide enrichment method was used to perform comparative profiling of proteins and phosphoproteins in the three cell lines. In total, 673 proteins and 33 Phosphoproteins were differentially expressed among these cell lines. These proteins are involved in several key cellular pathways that include DNA replication and repair, splicing machinery, amino acid metabolism, cellular energy, and estrogen signaling pathway. Many of the differentially expressed proteins are associated with different types of tumors including breast cancer. For validation, 4 highly significant expressed proteins including S-methyl-5'-thioadenosine phosphorylase (MTAP), BTB/POZ domain-containing protein (KCTD12), Poly (ADP-ribose) polymerase 1 (PARP 1), and Prelamin-A/C were subjected to western blotting, and the results were consistent with proteomics analysis. Unlike MCF-7 and MDA-MB-231, KAIMRC1 showed different phospho- and non-phosphoproteomic phenotypes which make it a potential model to study breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mapas de Interacción de Proteínas , Proteómica/métodos , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Lamina Tipo A/metabolismo , Células MCF-7 , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas/metabolismo , Regulación hacia Arriba
8.
Biomolecules ; 10(2)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973079

RESUMEN

Although the antidiabetic efficacy of Nyctanthes arbor-tristis flowers has been reported, antiproliferative and anti-obesity activities are yet to be explored. We examined the anti-obesity and antiproliferative potentials of different fractions (hexane, chloroform, ethyl acetate, methanol) of N. abor-tristis flower extract for the first time using 3T3-L1 cells, primary peripheral blood mononuclear cells (PBMC) isolated from healthy and adult acute myeloid (AML) and chronic lymphocytic leukemia (CLL) patients, recombinant Jurkat T cells, and MCF7 cell lines. The in vitro hypoglycemic activity was evaluated using the inhibition of -amylase enzyme and glucose uptake by yeast cells. The percentage glucose uptake and -amylase inhibitory activity increased in a dose-dependent manner in the crude and the tested fractions (hexane and ethyl acetate). Inhibition of the 3T3-L1 cells' differentiation was observed in the ethyl acetate and chloroform fractions, followed by the hexane fraction. Antiproliferative analyses revealed that Nyctanthes exerted a high specific activity against anti-AML and anti-CLL PBMC cells, especially by the hexane and ethyl acetate fractions. The gas chromatography/mass spectrometry analysis indicated the presence of 1-heptacosanol (hexane fraction), 1-octadecene (hexane and chloroform fractions), and other organic compounds. Molecular docking demonstrated that phenol,2,5-bis(1,1-dimethylethyl) and 4-hydroxypyridine 1-oxide compounds showed specificity toward survivin protein, indicating the feasibility of N. abor-tristis in developing new drug leads against leukemia.


Asunto(s)
Adipocitos/citología , Antineoplásicos Fitogénicos/farmacología , Flores/química , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Mieloide Aguda/metabolismo , Oleaceae/química , Survivin/metabolismo , Células 3T3-L1 , Alquenos/química , Animales , Proliferación Celular , Evaluación Preclínica de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Concentración 50 Inhibidora , Células Jurkat , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucocitos Mononucleares/citología , Células MCF-7 , Ratones , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología
9.
Front Genet ; 10: 534, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275352

RESUMEN

Skeletal development throughout the embryonic and postnatal phases is a dynamic process, based on bone remodeling and the balance between the activities of osteoclasts and osteoblasts modulating skeletal homeostasis. The Notch signaling pathway is a regulator of several developmental processes, and plays a crucial role in the development of the human skeleton by regulating the proliferation and differentiation of skeletal cells. The Delta Like-1 (DLL1) gene plays an important role in Notch signaling. We propose that an identified alteration in DLL1 protein may affect the downstream signaling. In this article, we present for the first time two siblings with a mutation in the DLL1 gene, presenting with congenital vertebral malformation. Using variable in silico prediction tools, it was predicted that the variant was responsible for the development of disease. Quantitative reverse-transcription polymerase chain reaction (PCR) for the Notch signaling pathway, using samples obtained from patients, showed a significant alteration in the expression of various related genes. Specifically, the expression of neurogenic locus notch homolog protein 1, SNW domain-containing protein 1, disintegrin, and metalloproteinase domain-containing proteins 10 and 17, was upregulated. In contrast, the expression of HEY1, HEY2, adenosine deaminase (ADA), and mastermind-like-1 (MAML-1) was downregulated. Furthermore, in a phosphokinase array, four kinases were significantly changed in patients, namely, p27, JANK1/2/3, mitogen- and stress-activated protein kinases 1 and 2, and focal adhesion kinase. Our results suggest an implication of a DLL1 defect related to the Notch signaling pathway, at least in part, in the morphologic abnormality observed in these patients. A limitation of our study was the low number of patients and samples. Further studies in this area are warranted to decipher the link between a DLL1 defect and skeletal abnormality.

10.
Sci Rep ; 9(1): 9481, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263250

RESUMEN

The preparation of mesoporous iron oxides with controllable physiochemical properties for effective therapeutic drug delivery remains a formidable challenge. Herein, iron oxide mesoporous magnetic microparticles (IO-MMMs) were prepared by a modified reverse hard-templating approach using, for the first time, acid-prepared mesoporous spheres (APMS) as the hard silica template. The obtained mesostructures exhibited remarkably high surface area and large pore volumes (SBET = 240 m2/g and Vpore = 0.55 cm3/g), controllable average sizes, generally uniform morphologies, and excellent biocompatibilities, allowing them to achieve optimal drug release in cancer cells and tumor tissues. IO-MMM carriers were able to co-load high amounts of hydrophilic chemotherapeutic drugs (Dox or Daun) and/or hydrophobic hormonal anticancer drugs (Tam), and release them sustainably in a pH-dependent manner, utilizing the fluorescence of Daun to real-time trace the intracellular drug distribution, and employing Daun/Tam to treat cancer by combined chemo/hormonal therapy. Cytotoxicity assays against different types of cancerous cells showed that the combinatory Daun/Tam@IO-MMM formulation significantly reduced the viability of metastatic MCF7 and KAIMRC1 breast as well as HCT8 colorectal cancer cells, with the least potency towards non-cancerous normal primary cells (up to 10-fold). Electron, flow, and live confocal microscopy imaging confirmed that the loaded vehicles were successfully and differentially uptaken by the different tested cells, gradually releasing their payloads, and causing apoptotic cell death. Importantly, compared to free drugs, Daun/Tam@IO-MMMs displayed enhanced drug accumulation in patient breast primary tumor tissues, deeply penetrating into the tumor region and killing the tumor cells inside. The designed carriers described here, thus, constitute a novel promising magnetic mesoporous smart system that entraps different kinds of drugs and release them in a controlled manner for combinatorial chemo/hormonal cancer theranostics. This multifactorial platform may open new avenues in cancer therapy as efficient synergistic antitumor system through overcoming limitations of conventional cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Dióxido de Silicio , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Porosidad , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/farmacología
11.
Molecules ; 24(11)2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141879

RESUMEN

We recently established a KAIMRC1 cell line that has unique features compared to the known breast cancer cell lines, MCF7 and MDA-MB231. To characterize it further, we investigated the expression profile of nuclear receptors and their respective co-factors in these cell lines. We confirm that in contrast to the triple negative cell line MDA-MB231, the MCF7 and KAIMRC1 are estrogen receptor alpha (ERa) and progesterone receptor alpha (PRa) positive, with significant lower expression of these receptors in KAIMRC1. KAIMRC1 cell is a vitamin D receptor (VDR) negative and V-ErbA-Related Protein 2 (EAR2) positive in contrast to MCF7 and MDA-MB231. Remarkably, the histone deacetylases (HDACs) are highly expressed in KAIRMC1 with HDAC6 and HDAC 7 are exclusively expressed in KAIMRC1 while thyroid hormone receptor-associated protein 80 (TRAP80), telomeric DNA binding protein 1 (TBP1) and TGF-beta receptor interacting protein (TRIP1) are absent in KAIMRC1 but present in MCF7 and MDA-MB231. In a luciferase reporter assay, the ERa coexpression is needed for estrogen receptor element (ERE)-luciferase activation by estradiol in KAIMRC1 but not in MCF7. The co-expression of exogenous Liver X receptor alpha (LXRa)/retinoid X receptor alpha (RXRa) are necessary for LXR responsive element (LXRE) activation by the GW3696 in the three cell lines. However, the activity of peroxisome proliferator-activated receptor response element (PPARE)-tk-luciferase reporter increased when peroxisome proliferator-activated receptors alpha (PPARa)/RXRa were coexpressed but the addition of PPARa agonist (GW7647) did not stimulate further the reporter. The signal of the PPARE reporter increased in a dose-dependent manner with rosiglitazone (PPARg agonist) in KAIMRC1, MCF7, and MDA-MB231 when the proliferator-activated receptors gamma (PPARg)/RXRa receptors were cotransfected. Retinoic acid-induced activation of retinoic acid receptor response element (RARE)-tk-luciferase is dependent on exogenous expression of retinoic acid receptor alpha (RARa)/RXRa heterodimer in MDA-MB 231 but not in MCF7 and KAIMRC1 cell lines. In the three cell lines, Bexarotene-induced retinoid X receptor response element (RXRE)-luciferase reporter activation was induced only if the RXRa/LXRa heterodimer were co-expressed. The vitamin D receptor response element (VDRE)-luciferase reporter activity showed another distinct feature of KAIMRC1, where only co-expression of exogenous vitamin D receptor (VDR)/RXRa heterodimer was sufficient to reach the maximum rate of activation of VDRE reporter. In the proliferation assay, nuclear receptors ligands showed a distinct effect on KAIMRC1 compared to MCF7 and MDA-MB231. Growth inhibition effects of used ligands suggest that KAIMRC1 correlate more closely to MDA-MB231 than MCF7. Vitamin D3, rosiglitazone, novel RXR compound (RXRc) and PPARa compound (GW6471) have the most profound effects. In conclusion, we showed that nuclear receptors are differentially expressed, activated and also their ligand produced distinct effects in KAIMRC1 compared to MCF7 and MDA-MB231. This finding gives us confidence that KAIMRC1 has a unique biological phenotype.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares/metabolismo , Transcripción Genética
12.
J Circadian Rhythms ; 16: 6, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-30210566

RESUMEN

In mammals, circadian rhythmicity is sustained via a transcriptional/translational feedback loop referred to as the canonical molecular circadian clock. Circadian rhythm is absent in undifferentiated embryonic stem cells; it begins only after differentiation. We used pluripotent P19 embryonal carcinoma stem cells to check the biological clock before and after differentiation into neurons using retinoic acid. We show that the central clock genes ARNTL (Bmal), Per2 and Per3, and the peripheral clock genes Rev-erb-α and ROR-α, oscillate before and after differentiation, as does the expression of the neuronal differentiation markers Hes5, ß-3-tubulin (Tubb3) and Stra13, but not Neurod1. Furthermore, the known clock-modulating compounds ERK, EGFR, Pi3K, p38, DNA methylation and Sirtiun inhibitors, in addition to Rev-erb-α ligands, modulate the expression of central and peripheral clock genes. Interestingly Sirtinol, Sirt1 and Sirt2 inhibitors had the greatest significant effect on the expression of clock genes, and increased Hes5 and Tubb3 expression during neuronal differentiation. Our findings reveal a new frontier of circadian clock research in stem cells: contrary to what has been published previously, we have shown the clock to be functional and to oscillate, even in undifferentiated stem cells. Modulating the expression of clock genes using small molecules could affect stem cell differentiation.

13.
BMC Cancer ; 17(1): 803, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187162

RESUMEN

BACKGROUND: Breast cancer is one of the most common cancer and a leading cause of death in women. Up to date the most commonly used breast cancer cell lines are originating from Caucasians or Afro-Americans but rarely cells are being derived from other ethnic groups. Here we describe for the first time the establishment of a naturally transformed breast cancer cell line, KAIMRC1 from an Arab woman of age 62 suffering from stage IIB breast cancer (T2N1M0). Moreover, we have characterized these cells for the biological and molecular markers, induction of MAPK pathways as well as its response to different commercially available drugs and compounds. METHODS: Breast cancer tissue sections were minced and cultured in media for several weeks. KAIMRC1 cells were successfully isolated from one of the primary breast tumor tissue cultures without any enzymatic digestion. To study the growth characteristics of the cells, wound healing assay, clonogenic assay, cell proliferation assays and live cell time-lapse microscopy was performed. Karyotyping, Immunophenotyping and molecular pathway specific compound treatment was also performed. A selective breast cancer gene expression panel was used to identify genes involved in the signal transduction dysregulation and malfunction of normal biological processes during breast carcinogenesis. RESULTS: These cells are ER/PR-positive and HER2-negative. The epithelial nature of these cells was confirmed by flow cytometry analysis using epithelial cell markers. They are cuboidal in shape and relatively smaller in size as compared to established cell lines, MCF-7, MDA MB-231 and the normal breast cell line, MCF-10A. In normal cell culture conditions these cells showed the capability of growing both in monolayer as well as in 3-D conformation. They showed a doubling time in vitro of approximately 24 h. They exhibit a modal karyotype of 58-63,X with abnormalities in a couple of chromosomes. KAIMRC1 cells were found to be more responsive to drug treatment in vitro in comparison to the established MDA MB-231 and MCF-7 cell lines. CONCLUSIONS: In conclusion we have isolated and characterized a new naturally immortalized breast cell line, KAIMRC1 with a potential to play a key role in opening up novel avenues towards the understanding of breast carcinoma.


Asunto(s)
Neoplasias de la Mama/etnología , Línea Celular Tumoral/metabolismo , Línea Celular Tumoral/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral/citología , Proliferación Celular , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Células MCF-7 , Persona de Mediana Edad , Estadificación de Neoplasias
14.
J Circadian Rhythms ; 15: 3, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-30210557

RESUMEN

Disregulation of genes making up the mammalian circadian clock has been associated with different forms of cancer. This study aimed to address how the circadian clock genes behave over the course of treatment for both the acute and chronic forms of leukemia and whether any could be used as potential biomarkers as a read-out for therapeutic efficacy. Expression profiling for both core and ancillary clock genes revealed that the majority of clock genes are down-regulated in acute myeloid leukemia patients, except for Cry2, which is up-regulated towards the end of treatment. A similar process was seen in acute lymphocytic leukemia patients; however, here, Cry2 expression came back up towards control levels upon treatment completion. In addition, all of the core clock genes were down-regulated in both chronic forms of leukemia (chronic myeloid leukemia and chronic lymphocytic leukemia), except for Cry2, which was not affected when the disease was diagnosed. Furthermore, the NAD(+) - dependent protein deacetylase Sirt1 has been proposed to have a dual role in both control of circadian clock circuitry and promotion of cell survival by inhibiting apoptotic pathways in cancer. We used a pharmacological-based approach to see whether Sirt1 played a role in regulating the circadian clock circuitry in both acute and chronic forms of leukemia. Our results suggest that interfering with Sirt1 leads to a partial restoration of BMAL1 oscillation in chronic myeloid leukemia patient samples. Furthermore, interfering with Sirt1 activity led to both the induction and repression of circadian clock genes in both acute and chronic forms of leukemia, which makes it a potential therapeutic target to either augment existing therapies for chronic leukemia or to act as a means of facilitating chronotherapy in order to maximize both the effectiveness of existing therapies and to minimize therapy-associated toxicity.

15.
Bioconjug Chem ; 27(6): 1471-83, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27269304

RESUMEN

We report the development of a chemotherapeutic nanoformulation made of polyvinylpyrrolidone-stabilized magnetofluorescent nanoparticles (Fl-PMNPs) loaded with anticancer drugs as a promising drug carrier homing to human breast cancer cells, primary tumors, and solid tumors. First, nanoparticle uptake and cell death were evaluated in three types of human breast cells: two metastatic cancerous MCF-7 and MDA-MB-231 cells and nontumorigenic MCF-10A cells. While Fl-PMNPs were not toxic to cells even at the highest concentrations used, Dox-loaded Fl-PMNPs showed significant potency, effectively killing the different breast cancer cells, albeit at different affinities. Interestingly and superior to free Dox, Dox-loaded Fl-PMNPs were found to be more effective in killing the metastatic cells (2- to 3-fold enhanced cytotoxicities for MDA-MB-231 compared to MCF-7), compared to the normal noncancerous MCF-10A cells (up to 8-fold), suggesting huge potentials as selective anticancer agents. Electron and live confocal microscopy imaging mechanistically confirmed that the nanoparticles were successfully endocytosed and packaged into vesicles inside the cytoplasm, where Dox is released and then translocated to the nucleus exerting its cytotoxic action and causing apoptotic cell death. Furthermore, commendable and enhanced penetration in 3D multilayered primary tumor cells derived from primary lesions as well as in patient breast tumor biopsies was observed, killing the tumor cells inside. The designed nanocarriers described here can potentially open new opportunities for breast cancer patients, especially in theranostic imaging and hyperthermia. While many prior studies have focused on targeting ligands to specific receptors to improve efficacies, we discovered that even with passive-targeted tailored delivery system enhanced toxic responses can be attained.


Asunto(s)
Neoplasias de la Mama/patología , Doxorrubicina/química , Portadores de Fármacos/química , Compuestos Férricos/química , Colorantes Fluorescentes/química , Espacio Intracelular/metabolismo , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Transporte Biológico , Biopsia , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Portadores de Fármacos/metabolismo , Composición de Medicamentos , Humanos , Células MCF-7 , Povidona/química
16.
Hepatology ; 52(4): 1341-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20842631

RESUMEN

UNLABELLED: Pregnancy alters bile acid homeostasis and can unmask cholestatic disease in genetically predisposed but otherwise asymptomatic individuals. In this report, we show that normal pregnant mice have raised hepatic bile acid levels in the presence of procholestatic gene expression. The nuclear receptor farnesoid X receptor (FXR) regulates the transcription of the majority of these genes, and we show that both ablation and activation of Fxr prevent the accumulation of hepatic bile acids during pregnancy. These observations suggest that the function of Fxr may be perturbed during gestation. In subsequent in vitro experiments, serum from pregnant mice and humans was found to repress expression of the Fxr target gene, small heterodimer partner (Shp), in liver-derived Fao cells. Estradiol or estradiol metabolites may contribute to this effect because coincubation with the estrogen receptor (ER) antagonist fulvestrant (ICI 182780) abolished the repressive effects on Shp expression. Finally, we report that ERα interacts with FXR in an estradiol-dependent manner and represses its function in vitro. CONCLUSION: Ligand-activated ERα may inhibit FXR function during pregnancy and result in procholestatic gene expression and raised hepatic bile acid levels. We propose that this could cause intrahepatic cholestasis of pregnancy in genetically predisposed individuals.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Preñez/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Estradiol/análogos & derivados , Estradiol/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Receptor alfa de Estrógeno/metabolismo , Femenino , Fulvestrant , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Preñez/sangre , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/biosíntesis
17.
Am J Physiol Gastrointest Liver Physiol ; 298(2): G151-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19815629

RESUMEN

Rodents undergo gestational hepatomegaly to meet the increased metabolic demands on the maternal liver during pregnancy. This is an important physiological process, but the mechanisms and signals driving pregnancy-induced liver growth are not known. Here, we show that liver growth during pregnancy precedes maternal body weight gain, is proportional to fetal number, and is a result of hepatocyte hypertrophy associated with cell-cycle progression, polyploidy, and altered expression of cell-cycle regulators p53, Cyclin-D1, and p27. Because circulating reproductive hormones and bile acids are raised in normal pregnant women and can cause liver growth in rodents, these compounds are candidates for the signal driving gestational liver enlargement in rodents. Administration of pregnancy levels of reproductive hormones was not sufficient to cause liver growth, but mouse pregnancy was associated with increased serum bile acid levels. It is known that the bile acid sensor Fxr is required for normal recovery from partial hepatectomy, and we demonstrate that Fxr(-/-) mice undergo gestational liver growth by adaptive hepatocyte hyperplasia. This is the first identification of any component that is required to maintain the normal mechanisms of gestational hepatomegaly and also implicates Fxr in a physiologically normal process that involves control of the hepatocyte cell cycle. Understanding pregnancy-induced hepatocyte hypertrophy in mice could suggest mechanisms for safely increasing functional liver capacity in women during increased metabolic demand.


Asunto(s)
Regeneración Hepática/fisiología , Hígado/fisiología , Preñez/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Colatos/metabolismo , Colatos/farmacología , Receptor de Androstano Constitutivo , Ciclina D1/genética , Ciclina D1/metabolismo , Metabolismo Energético/fisiología , Femenino , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Hígado/citología , Hígado/crecimiento & desarrollo , Ratones , Ratones Mutantes , Ovariectomía , Poliploidía , Embarazo , Fase S/efectos de los fármacos , Fase S/fisiología
18.
J Med Chem ; 50(26): 6519-34, 2007 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-18038970

RESUMEN

The synthesis and biological activity of tetrahydronaphthalene derivatives coupled to various heterocycles are described. These compounds are potent glucocorticoid receptor agonists with efficacy selectivity in an NFkappaB glucocorticoid receptor (GR) agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). Quinolones, indoles, and C- and N-linked quinolines are some of the heterocycles that provide efficacy selectivity. For example, the isoquinoline 49D1E2 has NFkappaB agonism with pIC50 of 8.66 (89%) and reduced efficacy in MMTV agonism (6%), and the quinoline 55D1E1 has NFkappaB agonism with pIC50 of 9.30 (101%) and reduced efficacy in MMTV agonism with pEC50 of 8.02 (47%). A description of how a compound from each class is modeled in the active site of the receptor is given.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Receptores de Glucocorticoides/agonistas , Tetrahidronaftalenos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Sitios de Unión , Línea Celular , Agonismo Parcial de Drogas , Humanos , Virus del Tumor Mamario del Ratón/genética , Modelos Moleculares , Imitación Molecular , FN-kappa B/genética , Receptores de Glucocorticoides/antagonistas & inhibidores , Estereoisomerismo , Relación Estructura-Actividad , Tetrahidronaftalenos/química , Tetrahidronaftalenos/farmacología , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
19.
Exp Cell Res ; 274(1): 130-7, 2002 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-11855864

RESUMEN

The biological actions of retinoids are mediated by nuclear retinoid receptors, RAR and RXR, which are ligand-activated transcription factors. We investigated the mechanism of attenuation of retinoid receptor activity in human keratinocyte HaCaT cells. Treatment of HaCaT cells with all-trans-retinoic acid or 9-cis-retinoic acid reduced RARgamma and RXRalpha protein levels by one-half within 24 h. In contrast, retinoid treatment did not alter RARgamma or RXRalpha mRNA levels, suggesting that retinoids stimulate breakdown of their receptors. Pulse-chase studies revealed that retinoid treatment of HaCaT cells reduced RARgamma and RXRalpha half-lives by 50%, indicating that retinoids accelerate breakdown of their receptors. The proteasome inhibitor MG132 prevented retinoid-induced receptor loss. Furthermore, MG132 potentiated retinoid-induced receptor activity, as assessed by expression of the retinoid-regulated CRABP-II gene in HaCaT cells. These data demonstrate that retinoids attenuate retinoid receptor function by enhancing proteasome-mediated retinoid receptor breakdown in HaCaT cells. Proteasome-mediated degradation of RARgamma or RXRalpha in vitro was significantly reduced by the corepressor SMRT, which binds unliganded retinoid receptors. This protection from degradation was markedly diminished by ligand, which causes SMRT to dissociate from receptors. Ligand failed to relieve protection from degradation by SMRT of a mutant form of RXRalpha that binds SMRT in the presence and absence of ligand. Addition of coactivators TIF1, TIF2, and RIP140 had no effect on degradation of RARgamma or RXRalpha. In summary, ligand binding to retinoid receptors promotes proteasome-mediated receptor degradation via dissociation of SMRT. Ligand-stimulated receptor degradation results in attenuation of retinoid signaling.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Queratinocitos/fisiología , Complejos Multienzimáticos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/fisiología , Adulto , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Queratinocitos/enzimología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejo de la Endopetidasa Proteasomal , Receptores de Ácido Retinoico/efectos de los fármacos , Receptores X Retinoide , Transducción de Señal/fisiología , Piel/citología , Factores de Transcripción/efectos de los fármacos , Tretinoina/farmacología , Receptor de Ácido Retinoico gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA