Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO Mol Med ; 15(6): e16505, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161793

RESUMEN

Analysis of circulating tumor DNA (ctDNA) to monitor cancer dynamics and detect minimal residual disease has been an area of increasing interest. Multiple methods have been proposed but few studies have compared the performance of different approaches. Here, we compare detection of ctDNA in serial plasma samples from patients with breast cancer using different tumor-informed and tumor-naïve assays designed to detect structural variants (SVs), single nucleotide variants (SNVs), and/or somatic copy-number aberrations, by multiplex PCR, hybrid capture, and different depths of whole-genome sequencing. Our results demonstrate that the ctDNA dynamics and allele fractions (AFs) were highly concordant when analyzing the same patient samples using different assays. Tumor-informed assays showed the highest sensitivity for detection of ctDNA at low concentrations. Hybrid capture sequencing targeting between 1,347 and 7,491 tumor-identified mutations at high depth was the most sensitive assay, detecting ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm). Multiplex PCR targeting 21-47 tumor-identified SVs per patient detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential as a clinical assay.


Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Tumoral Circulante/genética , Mutación
2.
Breast Cancer Res ; 23(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413557

RESUMEN

BACKGROUND: NRG1 gene fusions may be clinically actionable, since cancers carrying the fusion transcripts can be sensitive to tyrosine kinase inhibitors. The NRG1 gene encodes ligands for the HER2(ERBB2)-ERBB3 heterodimeric receptor tyrosine kinase, and the gene fusions are thought to lead to autocrine stimulation of the receptor. The NRG1 fusion expressed in the breast cancer cell line MDA-MB-175 serves as a model example of such fusions, showing the proposed autocrine loop and exceptional drug sensitivity. However, its structure has not been properly characterised, its oncogenic activity has not been fully explained, and there is limited data on such fusions in breast cancer. METHODS: We analysed genomic rearrangements and transcripts of NRG1 in MDA-MB-175 and a panel of 571 breast cancers. RESULTS: We found that the MDA-MB-175 fusion-originally reported as a DOC4(TENM4)-NRG1 fusion, lacking the cytoplasmic tail of NRG1-is in reality a double fusion, PPP6R3-TENM4-NRG1, producing multiple transcripts, some of which include the cytoplasmic tail. We hypothesise that many NRG1 fusions may be oncogenic not for lacking the cytoplasmic domain but because they do not encode NRG1's nuclear-localised form. The fusion in MDA-MB-175 is the result of a very complex genomic rearrangement, which we partially characterised, that creates additional expressed gene fusions, RSF1-TENM4, TPCN2-RSF1, and MRPL48-GAB2. We searched for NRG1 rearrangements in 571 breast cancers subjected to genome sequencing and transcriptome sequencing and found four cases (0.7%) with fusions, WRN-NRG1, FAM91A1-NRG1, ARHGEF39-NRG1, and ZNF704-NRG1, all splicing into NRG1 at the same exon as in MDA-MB-175. However, the WRN-NRG1 and ARHGEF39-NRG1 fusions were out of frame. We identified rearrangements of NRG1 in many more (8% of) cases that seemed more likely to inactivate than to create activating fusions, or whose outcome could not be predicted because they were complex, or both. This is not surprising because NRG1 can be pro-apoptotic and is inactivated in some breast cancers. CONCLUSIONS: Our results highlight the complexity of rearrangements of NRG1 in breast cancers and confirm that some do not activate but inactivate. Careful interpretation of NRG1 rearrangements will therefore be necessary for appropriate patient management.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neurregulina-1/genética , Proteínas de Fusión Oncogénica/genética , Empalme Alternativo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Sitios Genéticos , Humanos , Neurregulina-1/química , Neurregulina-1/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Transducción de Señal , Translocación Genética
3.
Proc Natl Acad Sci U S A ; 117(4): 2092-2098, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31964840

RESUMEN

Our purpose is to investigate the feasibility of imaging tumor metabolism in breast cancer patients using 13C magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C label exchange between injected [1-13C]pyruvate and the endogenous tumor lactate pool. Treatment-naïve breast cancer patients were recruited: four triple-negative grade 3 cancers; two invasive ductal carcinomas that were estrogen and progesterone receptor-positive (ER/PR+) and HER2/neu-negative (HER2-), one grade 2 and one grade 3; and one grade 2 ER/PR+ HER2- invasive lobular carcinoma (ILC). Dynamic 13C MRSI was performed following injection of hyperpolarized [1-13C]pyruvate. Expression of lactate dehydrogenase A (LDHA), which catalyzes 13C label exchange between pyruvate and lactate, hypoxia-inducible factor-1 (HIF1α), and the monocarboxylate transporters MCT1 and MCT4 were quantified using immunohistochemistry and RNA sequencing. We have demonstrated the feasibility and safety of hyperpolarized 13C MRI in early breast cancer. Both intertumoral and intratumoral heterogeneity of the hyperpolarized pyruvate and lactate signals were observed. The lactate-to-pyruvate signal ratio (LAC/PYR) ranged from 0.021 to 0.473 across the tumor subtypes (mean ± SD: 0.145 ± 0.164), and a lactate signal was observed in all of the grade 3 tumors. The LAC/PYR was significantly correlated with tumor volume (R = 0.903, P = 0.005) and MCT 1 (R = 0.85, P = 0.032) and HIF1α expression (R = 0.83, P = 0.043). Imaging of hyperpolarized [1-13C]pyruvate metabolism in breast cancer is feasible and demonstrated significant intertumoral and intratumoral metabolic heterogeneity, where lactate labeling correlated with MCT1 expression and hypoxia.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Imagen por Resonancia Magnética/instrumentación , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Simportadores/genética , Simportadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA