Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Planta Med ; 89(7): 718-728, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36626932

RESUMEN

Gouty arthritis (GA) is an inflammatory arthritis triggered by the deposition of monosodium urate monohydrate (MSU) crystals, causing pain, inflammation, and joint damage. Several drugs are currently employed to manage acute flares of GA, but they either have limited effectiveness or induce severe adverse reactions. Ouratea spectabilis is traditionally used in Brazil to treat gastric ulcers and rheumatism. The ethanolic extract of O. spectabilis stems (OSpC) and four biflavanones (ouratein A - D) isolated thereof were evaluated in a murine model of GA induced by the injection of MSU crystals. The underlying mechanism of action of ouratein D was investigated in vitro in cell cultures by measurement of IL-1ß levels by ELISA and Western blot analysis. The administration of OSpC (10, 30 or 100 mg/Kg, p. o.) reduced the migration of total inflammatory cells, monocytes, and neutrophils and diminished the levels of IL-1ß and CXCL1 in the synovial tissue. Among the tested compounds, only ouratein D (1 mg/Kg) reduced the migration of the inflammatory cells and it was shown to be active up to 0.01 mg/Kg (equivalent to 0.34 nM/Kg, p. o.). Treatment of pre-stimulated THP-1 cells (differentiated into macrophages) or BMDMs with ouratein D reduced the release of IL-1ß in both macrophage lines. This biflavanone reduced the activation of caspase-1 (showed by the increase in the cleaved form) in supernatants of cultured BMDMs, evidencing its action in modulating the inflammasome pathway. The obtained results demonstrate the anti-gout properties of O. spectabilis and point out ouratein D as the bioactive component of the assayed extract.


Asunto(s)
Artritis Gotosa , Gota , Ochnaceae , Ratones , Animales , Ochnaceae/metabolismo , Gota/inducido químicamente , Gota/metabolismo , Ácido Úrico , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Interleucina-1beta/metabolismo
2.
J Ethnopharmacol ; 306: 116164, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36681165

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The endemic Brazilian medicinal plants of the genus Terminalia (Combretaceae), popularly known as capitão, comprising the similar species Terminalia phaeocarpa Eichler and Terminalia argentea, are traditionally and indistinguishably used in the country to treat diabetes. AIM OF THE STUDY: The present work investigated the effect of 28 days of treatment with the crude ethanolic extract (CEE) and its derived ethyl acetate fraction (EAF) from T. phaeocarpa leaves in a mice model of diabetes. MATERIALS AND METHODS: Streptozotocin-nicotinamide-fructose diabetic model was used to evaluate the antidiabetic activity of 28 days of treatment with the CEE and EAF from the leaves of T. phaeocarpa and metformin as a positive control. Serum levels of total cholesterol, triglycerides, uric acid, ALP, AST, and ALT were measured with specific commercial kits and glucose with a strip glucometer. The thiobarbituric acid method measured the liver MDA level, while a colorimetric assay measured the GSH level and PTP1B activity. A UPLC-DAD profile was obtained to identify the main polyphenolic compound in the EAF. RESULTS: Treatment with CEE and EAF reduced plasma glucose in diabetic mice. At the end of the treatment, the plasma glucose level was significantly lower in EAF-treated (100 mg/kg) diabetic mice (106.1 ± 13.7 mg/dL) than those treated with 100 mg/kg CEE (175.2 ± 20.9 mg/dL), both significantly lower than untreated diabetic mice (350.4 ± 28.1 mg/dL). The serum levels of total cholesterol, triglycerides, uric acid, ALP, AST, and ALT were significantly reduced in diabetic mice treated with CEE and EAF. In the livers of diabetic mice, the treatment with CEE and EAF reduced MDA levels and the activity of the enzyme PTP1B (96.9 ± 3.7%, 113.8 ± 2.8%, and 134.8 ± 4.6% for CEE-, EAF-treated, and untreated diabetic mice, respectively). Galloylpunicalagin was the main polyphenol observed in the EAF of T. phaeocarpa. CONCLUSION: The present results demonstrate the significant antidiabetic effect of CEE and EAF of T. phaeocarpa and their reduction on the markers of liver dysfunction in diabetic mice. Moreover, the antidiabetic activity of T. phaeocarpa might be associated with lowering the augmented activity of the PTP1B enzyme in the liver of diabetic mice.


Asunto(s)
Combretaceae , Diabetes Mellitus Experimental , Terminalia , Ratones , Animales , Modelos Animales de Enfermedad , Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Extractos Vegetales/farmacología , Ácido Úrico/farmacología , Hipoglucemiantes/farmacología , Hígado , Etanol/farmacología , Triglicéridos , Colesterol/farmacología
3.
Food Chem ; 345: 128734, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33310563

RESUMEN

Pequi fruit peels are an underexploited source of polyphenols. The anti-diabetic potential of an extract and fractions from the peels were evaluated in a panel of assays. The extract and fractions thereof inhibited the release of cytokines involved in insulin resistance - TNF, IL-1ß, and CCL2 - by lipopolysaccharide-stimulated THP-1 cells. The ethyl acetate fraction inhibited in vitro α-glucosidase (pIC50 = 4.8 ± 0.1), an enzyme involved in the metabolization of starch and disaccharides to glucose, whereas a fraction enriched in tannins (16C) induced a more potent α-glucosidase inhibition (pIC50 = 5.3 ± 0.1). In the starch tolerance test in mice, fraction 16C reduced blood glucose level (181 ± 10 mg/dL) in comparison to the vehicle-treated group (238 ± 11 mg/dL). UPLC-DAD-ESI-MS/MS analyses disclosed phenolic acids and tannins as constituents, including corilagin and geraniin. These results highlight the potential of pequi fruit peels for developing functional foods to manage type-2 diabetes.


Asunto(s)
Frutas/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Malpighiales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Glucemia/metabolismo , Ratones , Polifenoles/análisis , Espectrometría de Masas en Tándem
4.
Parasitol Res ; 120(1): 321-335, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33191446

RESUMEN

Treatment for visceral leishmaniasis (VL) is hampered mainly by drug toxicity, their high cost, and parasite resistance. Drug development is a long and pricey process, and therefore, drug repositioning may be an alternative worth pursuing. Cardenolides are used to treat cardiac diseases, especially those obtained from Digitalis species. In the present study, cardenolide digitoxigenin (DIGI) obtained from a methanolic extract of Digitalis lanata leaves was tested for its antileishmanial activity against Leishmania infantum species. Results showed that 50% Leishmania and murine macrophage inhibitory concentrations (IC50 and CC50, respectively) were of 6.9 ± 1.5 and 295.3 ± 14.5 µg/mL, respectively. With amphotericin B (AmpB) deoxycholate, used as a control drug, values of 0.13 ± 0.02 and 0.79 ± 0.12 µg/mL, respectively, were observed. Selectivity index (SI) values were of 42.8 and 6.1 for DIGI and AmpB, respectively. Preliminary studies suggested that the mechanism of action for DIGI is to cause alterations in the mitochondrial membrane potential, to increase the levels of reactive oxygen species and induce accumulation of lipid bodies in the parasites. DIGI was incorporated into Pluronic® F127-based polymeric micelles, and the formula (DIGI/Mic) was used to treat L. infantum-infected mice. Miltefosine was used as a control drug. Results showed that animals treated with either miltefosine, DIGI, or DIGI/Mic presented significant reductions in the parasite load in their spleens, livers, bone marrows, and draining lymph nodes, as well as the development of a specific Th1-type response, when compared with the controls. Results obtained 1 day after treatment were corroborated with data corresponding to 15 days after therapy. Importantly, treatment with DIGI/Mic induced better parasitological and immunological responses when compared with miltefosine- and DIGI-treated mice. In conclusion, DIGI/Mic has the potential to be used as a therapeutic agent to protect against L. infantum infection, and it is therefore worth of consideration in future studies addressing VL treatment.


Asunto(s)
Antiprotozoarios/uso terapéutico , Digitoxigenina/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Leishmania infantum/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Poloxámero/uso terapéutico , Anfotericina B/uso terapéutico , Animales , Ácido Desoxicólico/uso terapéutico , Combinación de Medicamentos , Femenino , Hígado/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Micelas , Carga de Parásitos , Especies Reactivas de Oxígeno , Bazo/parasitología
5.
J Nat Prod ; 83(6): 1891-1898, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32484349

RESUMEN

Ouratea spectabilis is an arborous species traditionally used in Brazil as an anti-inflammatory agent. Four new (3,3″)-linked biflavanone O-methyl ethers, named ouratein A (1), B (2), C (3), and D (4), were isolated from the bark extract of the species. Ouratein A (1) is an enantiomer of neochamagesmine A, which has never been described before. The structures were elucidated by extensive spectroscopic data analyses, whereas their absolute configurations were defined by electronic circular dichroism data. Ouratein D (4) inhibited in vitro the release of the pro-inflammatory cytokine CCL2 by lipopolysaccharide-stimulated THP-1 cells (IC50 of 3.1 ± 1.1 µM), whereas TNF and IL-1ß release were not reduced by any of the biflavanones. These findings show ouratein D (4) as a selective CCL2 inhibitor, which may have potential for the development of new anti-inflammatory agents to prevent or treat cardiovascular diseases.


Asunto(s)
Antiinflamatorios/farmacología , Citocinas/metabolismo , Flavonas/farmacología , Ochnaceae/química , Línea Celular Tumoral , Quimiocina CCL2/antagonistas & inhibidores , Dicroismo Circular , Flavonas/química , Flavonas/aislamiento & purificación , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Estructura Molecular , Corteza de la Planta/química , Extractos Vegetales/química , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
6.
ACS Omega ; 4(26): 22048-22056, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891085

RESUMEN

In recent years, cardiac glycosides (CGs) have been investigated as potential antiviral and anticancer drugs. Digitoxigenin (DIG) and other CGs have been shown to bind and inhibit Na+/K+-adenosinetriphosphatase (ATPase). Tumor cells show a higher expression rate of the Na+/K+-ATPase protein or a stronger affinity towards the binding of CGs and are therefore more prone to CGs than non-tumor cells. Cancer imaging techniques using radiotracers targeted at specific receptors have yielded successful results. Technetium-99m (99mTc) is one of the radionuclides of choice to radiolabel pharmaceuticals because of its favorable physical and chemical properties along with reasonable costs. Herein, we describe a new Na+/K+-ATPase targeting radiotracer consisting of digitoxigenin and diethylenetriaminepentaacetic acid (DTPA), a bifunctional chelating ligand used to prepare 99mTc-labeled complexes, and its evaluation as an imaging probe. We report the synthesis and characterization of the radiolabeled compound including stability tests, blood clearance, and biodistribution in healthy mice. Additionally, we investigated the binding of the compound to A549 human non-small-cell lung cancer cells and the inhibition of the Na+/K+-ATPase by the labeled compound in vitro. The 99mTc-labeled DTPA-digitoxigenin (99mTc-DTPA-DIG) compound displayed high stability in vitro and in vivo, a fast renal excretion, and a specific binding towards A549 cancer cells in comparison to non-tumor cells. Therefore, 99mTc-DTPA-DIG could potentially be used for non-invasive visualization of tumor lesions by means of scintigraphic imaging.

7.
Front Pharmacol ; 9: 70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545747

RESUMEN

Cardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC) and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion) were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

8.
Biomed Pharmacother ; 97: 684-696, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29101813

RESUMEN

Cardiac glycosides (CGs) are natural compounds widely used to treat several cardiac conditions and more recently have been recognized as potential antitumor agents. They are known as Na,K-ATPases ligands, which is a promising drug target in cancer. In this study, the short and long-lasting cytotoxic effects of the natural cardenolide digitoxigenin monodigitoxoside (DGX) were evaluated against two non-small cell lung cancer lines (A549 and H460 cells). It was found that DGX induced cytotoxic effects in both cells and the apoptotic effects were more pronounced on H460 cells. In long-term analysis, using the clonogenic and the cumulative population doubling (CPD) assays, DGX showed a reduction of cell survival, after 15days without re-treatment. To better understand DGX effects in A549 cells, several assays were conducted. In cell cycle analysis, DGX caused an arrest in S and G2/M phases. This compound also increased the number of cells in subG1 phase in a concentration- and time-dependent manner. The presence of ß-galactosidase positive cells, large nucleus and flattened cells indicated senescence. Additionally, DGX inhibited Na,K-ATPase activity in A549 cells, as well as in purified pig kidney and in human red blood cell membrane preparations, at nanomolar range. Moreover, results of molecular docking showed that DGX binds with high efficiency (-11.4Kcal/mol) to the Na,K-ATPase (PDB:4HYT). Taken together, our results highlight the potent effects of DGX both in A549 and H460 cells, and disclose its link with Na,K-ATPase inhibition.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Digitoxigenina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Células A549 , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Digitoxigenina/farmacología , Humanos , Neoplasias Pulmonares/patología , Simulación del Acoplamiento Molecular , Porcinos , Factores de Tiempo
9.
Planta Med ; 83(12-13): 1035-1043, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28486743

RESUMEN

Recent studies demonstrate that cardiac glycosides, known to inhibit Na+/K+-ATPase in humans, have increased susceptibility to cancer cells that can be used in tumor therapy. One of the most promising candidates identified so far is glucoevatromonoside, which can be isolated from the endangered species Digitalis mariana ssp. heywoodii. Due to its complex structure, glucoevatromonoside cannot be obtained economically by total chemical synthesis. Here we describe two methods for glucoevatromonoside production, both using evatromonoside obtained by chemical degradation of digitoxin as the precursor. 1) Catalyst-controlled, regioselective glycosylation of evatromonoside to glucoevatromonoside using 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide as the sugar donor and 2-aminoethyldiphenylborinate as the catalyst resulted in an overall 30 % yield. 2) Biotransformation of evatromonoside using Digitalis lanata plant cell suspension cultures was less efficient and resulted only in overall 18 % pure product. Structural proof of products has been provided by extensive NMR data. Glucoevatromonoside and its non-natural 1-3 linked isomer neo-glucoevatromonoside obtained by semisynthesis were evaluated against renal cell carcinoma and prostate cancer cell lines.


Asunto(s)
Antineoplásicos/metabolismo , Cardenólidos/metabolismo , Glicósidos Cardíacos/metabolismo , Digitalis/metabolismo , Digitoxina/química , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Biotransformación , Cardenólidos/síntesis química , Cardenólidos/aislamiento & purificación , Cardenólidos/farmacología , Glicósidos Cardíacos/síntesis química , Glicósidos Cardíacos/aislamiento & purificación , Glicósidos Cardíacos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Digitalis/química , Digitoxina/aislamiento & purificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/metabolismo , Glicosilación , Humanos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Mol Cell Biochem ; 428(1-2): 23-39, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28176244

RESUMEN

Cardenolides are cardiac glycosides, mostly obtained from natural sources. They are well known for their inhibitory action on the Na,K-ATPase, an effect that regulates cardiovascular alterations such as congestive heart failure and atrial arrhythmias. In recent years, they have also sparked new interest in their anticancer potential. In the present study, the cytotoxic effects of the natural cardenolide convallatoxin (CON) were evaluated on non-small cell lung cancer (A549 cells). It was found that CON induced cytostatic and cytotoxic effects in A549 cells, showing essentially apoptotic cell death, as detected by annexin V-propidium iodide double-staining, as well as changes in cell form. In addition, it prompted cell cycle arrest in G2/M and reduced cyclin B1 expression. This compound also increased the number of cells in subG1 in a concentration- and time-dependent manner. At a long term, the reduction of cumulative population doubling was shown along with an increase of ß-galactosidase positive cells and larger nucleus, indicative of senescence. Subsequently, CON inhibited the Na,K-ATPase in A549 cells at nM concentrations. Interestingly, at the same concentrations, CON was unable to directly inhibit the Na,K-ATPase, either in pig kidney or in red blood cells. Additionally, results of docking calculations showed that CON binds with high efficiency to the Na,K-ATPase. Taken together, our data highlight the potent anticancer effects of CON in A549 cells, and their possible link with non-classical inhibition of Na,K-ATPase.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrofantinas/farmacología , Células A549 , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/enzimología , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , ATPasa Intercambiadora de Sodio-Potasio/química , Porcinos
11.
Artículo en Inglés | MEDLINE | ID: mdl-27867403

RESUMEN

Stryphnodendron species, popularly named "barbatimão," are traditionally used in Brazil as anti-inflammatory agents. This study aimed to investigate the effect of barbatimão and 11 other species on the production of tumor necrosis factor-alpha (TNF-α) in lipopolysaccharide- (LPS-) stimulated THP-1 cells, as well as their anti-arthritis activity. The extracts of Stryphnodendron adstringens, Stryphnodendron obovatum, Campomanesia lineatifolia, and Terminalia glabrescens promoted a concentration-dependent inhibition of TNF-α. Mice injected with LPS in the knee joint were treated per os with fractions from the selected extracts. Both the organic (SAO) and the aqueous (SAA) fractions of S. adstringens promoted a dose-dependent reduction of leukocyte migration and neutrophil accumulation into the joint, but none of them reduced CXCL1 concentration in the periarticular tissue. In contrast, treatment with C. lineatifolia and T. glabrescens fractions did not ameliorate the inflammatory parameters. Analyses of SAO by Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) led to the identification of gallic acid along with 11 prodelphinidins, characterized as monomers and dimers of the B-type. Our findings contribute to some extent to corroborating the traditional use of S. adstringens as an anti-inflammatory agent. This activity is probably related to a decrease of leukocyte migration into the inflammatory site. Polyphenols like gallic acid and prodelphinidins, identified in the active fraction, may contribute to the observed activity.

12.
J Nat Prod ; 79(9): 2279-86, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27548746

RESUMEN

Continued investigation of the polyphenolic pool of the fruits of Mansoa hirsuta afforded four additional members of the new class of glucosylated oligomeric flavonoids comprising a flavanone core linked to 1,3-diarylpropane C6-C3-C6 units. The structures and absolute configurations of mansoins C-F (3-6) were established by analysis of NMR and electronic circular dichroism data. Mansoin C (3) was identified as a diglucosylated heterodimer, whereas mansoins D (4), E (5), and F (6) were identified as triglucosylated heterotrimers, isomeric with mansoin A (1). Mansoin F (6) inhibited TNF-α release by lipopolysaccharide-stimulated THP-1 cells (IC50 of 19.3 ± 1.3 µM) and, as with mansoin A (1), reduced the phosphorylation levels of p-65-NF-κB, when assayed at 50 µM. These results indicate that the potential anti-inflammatory properties of mansoin F (6) are probably due to inhibition of the NF-κB pathway and inhibition of TNF-α release.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Bignoniaceae/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Antiinflamatorios/química , Flavonoides/química , Frutas/química , Glucósidos/química , Humanos , Lipopolisacáridos/farmacología , Estructura Molecular , FN-kappa B/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
13.
Nat Prod Res ; 30(11): 1327-31, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26252521

RESUMEN

Cardiac glycosides consist of a large family of naturally derived compounds that are clinically used to treat congestive heart failure, and also present anticancer properties. In this study, the cytotoxic effects of two cardenolides, digitoxigenin monodigitoxoside (DGX) and convallatoxin (CON) were screened in four human tumour cell lines. Both compounds showed anti-proliferative effects in all tumour cells, at nanomolar concentrations. Since the human lung cancer cell line A549 was the most sensitive, we investigated the anti-proliferative, anti-migratory and anti-invasive effects of these cardenolides. DGX and CON reduced A549 cell migration, being able to reduce more than 90% of cell invasion. Their effects on the expression of key regulators of metastatic mechanism showed decreased levels of MMP-2, MMP-9 and p-FAK. Both compounds also presented low toxicity for healthy cells. Finally, this work provides the first insights into the effects of these cardenolides on key steps of lung cancer metastasis.


Asunto(s)
Cardenólidos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Digitoxigenina/análogos & derivados , Neoplasias Pulmonares/patología , Células A549 , Glicósidos Cardíacos/farmacología , Línea Celular Tumoral , Digitoxigenina/farmacología , Humanos , Metástasis de la Neoplasia/tratamiento farmacológico , Estrofantinas/farmacología
14.
Phytother Res ; 29(10): 1509-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26094613

RESUMEN

Several plant species are used in Brazil to treat inflammatory diseases and associated conditions. TNF-α plays a pivotal role on inflammation, and several plant extracts have been assayed against this target, both in vitro and in vivo. The effect of 11 Brazilian medicinal plants on TNF-α release by LPS-activated THP-1 cells was evaluated. The plant materials were percolated with different solvents to afford 15 crude extracts, whose effect on TNF-α release was determined by ELISA. Among the evaluated extracts, only Jacaranda caroba (Bignoniaceae) presented strong toxicity to THP-1 cells. Considering the 14 non-toxic extracts, TNF-α release was significantly reduced by seven of them (inhibition > 80%), originating from six plants, namely Cuphea carthagenensis (Lythraceae), Echinodorus grandiflorus (Alismataceae), Mansoa hirsuta (Bignoniaceae), Ouratea semiserrata (Ochnaceae), Ouratea spectabilis and Remijia ferruginea (Rubiaceae). The ethanol extract from O. semiserrata leaves was fractionated over Sephadex LH-20 and RP-HPLC to give three compounds previously reported for the species, along with agathisflavone and epicatechin, here described for the first time in the plant. Epicatechin and lanceoloside A elicited significant inhibition of TNF-α release, indicating that they may account for the effect produced by O. semiserrata crude extract.


Asunto(s)
Extractos Vegetales , Plantas Medicinales , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Bignoniaceae , Brasil , Cromatografía Líquida de Alta Presión , Dextranos , Ochnaceae , Extractos Vegetales/farmacología , Hojas de la Planta , Solventes
15.
Artículo en Inglés | MEDLINE | ID: mdl-25878716

RESUMEN

Several plant species are traditionally used in Brazil to treat various inflammatory diseases. Tumor necrosis factor- (TNF-) α and chemokine (C-C motif) ligand 2 (CCL2) are key inflammatory mediators in diseases like rheumatoid arthritis and atherosclerosis, respectively; nevertheless, only a few extracts have been assayed against these targets. We herein report the effect of 19 plant extracts on TNF-α and CCL2 release by lipopolysaccharide- (LPS-) stimulated THP-1 cells, a human monocytic leukemia cell line, along with their radical scavenging activity on DPPH. The extracts of Caryocar brasiliense, Casearia sylvestris, Coccoloba cereifera, and Terminalia glabrescens inhibited TNF-α production in a concentration-dependent manner. Fractionation of these extracts potentiated the anti-TNF-α effect, which was shown to concentrate in polar fractions, mainly composed by polyphenols. Significant CCL2 inhibition was elicited by Lippia sidoides and Terminalia glabrescens extracts, whose fractionation resulted in highly active low polar fractions. All assayed extracts showed strong radical scavenging activity, but antioxidant activity did not correlate with inhibition of TNF-α or CCL2 production. Our results allowed identifying extracts with selective capacity to block cytokine production; therefore, further purification of these extracts may yield molecules that could be useful in the treatment of chronic inflammatory diseases.

16.
PLoS One ; 10(3): e0118356, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793994

RESUMEN

Rheumatoid Arthritis (RA) is a chronic disease characterized by persistent inflammation and pain. Alternative therapies to reduce these symptoms are needed. Marine algae are valuable sources of diverse bioactive compounds. Lithothamnion muelleri (Hapalidiaceae) is a marine algae with anti-inflammatory, antitumor, and immunomodulatory properties. Here, we investigated the potential anti-inflammatory and analgesic activities of L. muelleri in a murine model of antigen-induced arthritis (AIA) in mice. Our results demonstrate that treatment with L. muelleri prevented inflammation and hypernociception in arthritic mice. Mechanistically, the crude extract and the polysaccharide-rich fractions of L. muelleri may act impairing the production of the chemokines CXCL1 and CXCL2, and consequently inhibit neutrophil influx to the knee joint by dampening the adhesion step of leukocyte recruitment in the knee microvessels. Altogether our results suggest that treatment with L.muelleri has a potential therapeutic application in arthritis treatment.


Asunto(s)
Artritis Experimental/patología , Inflamación/patología , Nocicepción , Rhodophyta/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Carbonato de Calcio/química , Adhesión Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Citometría de Flujo , Articulaciones/irrigación sanguínea , Articulaciones/efectos de los fármacos , Articulaciones/patología , Leucocitos/efectos de los fármacos , Leucocitos/patología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Masculino , Ratones Endogámicos C57BL , Nocicepción/efectos de los fármacos , Polisacáridos/química , Membrana Sinovial/irrigación sanguínea , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/patología
17.
Langmuir ; 30(50): 15083-90, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25490253

RESUMEN

Ursolic acid (UA) is a triterpene found in different plant species that has been shown to possess significant antitumor activity. However, UA presents a low water solubility, which limits its biological applications. In this context, our research group has proposed the incorporation of UA in long-circulating and pH-sensitive liposomes (SpHL-UA).These liposomes, composed of dioleylphosphatidylethanolamine (DOPE), cholesteryl hemisuccinate (CHEMS), and distearoylphosphatidylethanolamine-polyethylene glycol2000 (DSPE-PEG2000), were shown to be very promising carriers for UA. Considering that the release of UA from SpHL-UA and its antitumor activity depend upon the occurrence of the lamellar to non-lamellar phase transition of DOPE, in the present work, the interactions of UA with the components of the liposomes were evaluated, aiming to clarify their role in the structural organization of DOPE. The study was carried out by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) under low hydration conditions. DSC studies revealed that DOPE phase transition temperatures did not shift significantly upon UA addition. On the other hand, in SAXS studies, a different pattern of DOPE phase organization was observed in the presence of UA, with the occurrence of the cubic phase Im3m at 20 °C and the cubic phase Pn3m at 60 °C. These findings suggest that UA interacts with the lipids and changes their self-assembly. However, these interactions between the lipids and UA were unable to eliminate the lamellar to non-lamellar phase transition, which is essential for the cytoplasmic delivery of UA molecules from SpHL-UA.


Asunto(s)
Liposomas/química , Triterpenos/química , Tampones (Química) , Ésteres del Colesterol/química , Concentración de Iones de Hidrógeno , Liposomas/sangre , Liposomas/farmacocinética , Modelos Moleculares , Conformación Molecular , Transición de Fase , Fosfatos/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Ácido Ursólico
18.
Rev. bras. farmacogn ; 24(4): 408-412, Jul-Aug/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-725635

RESUMEN

Hedychium coronarium J. Koenig, Zingiberaceae, is a medicinal plant popularly used to treat inflammatory conditions in different countries. Three labdane diterpenes [isocoronarin D (1), methoxycoronarin D (2), ethoxycoronarin D (3)] and benzoyl eugenol (4) were isolated from rhizomes and their chemopreventive potential was evaluated using in vitro assays, namely the inhibition of NF-κB, COX-1 and -2, the induction of antioxidant response element (ARE), and the inhibition of cell proliferation. Diterpene 1 activated ARE (EC50 57.6 ± 2.4 µM), while 2, 3 and 4 significantly inhibited NF-κB (IC50 of 7.3 ± 0.3, 3.2 ± 0.3 and 32.5 ± 4.9 µM, respectively). In addition, 2 and 3 selectively inhibited COX-1 (IC50 values of 0.9 ± 0.0 and 3.8 ± 0.0 µM, respectively). These data support the potential chemopreventive activity of constituents from H. coronarium rhizomes.

19.
J Nat Prod ; 77(4): 824-30, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24576254

RESUMEN

Mansoins A (1) and B (2) isolated from the fruits of Mansoa hirsuta represent new glucosylated heterotrimeric flavonoids with a flavanone core linked to two 1,3-diarylpropane C6-C3-C6 units. Their structures and absolute configurations were established by analysis of their NMR and electronic circular dichroism spectroscopic data. Compounds 1 and 2 inhibited TNF-α release by LPS-stimulated THP-1 cells with different potencies, with mansoin B (2) being active at lower concentrations than mansoin A (1) (IC50 values 20.0±1.4 and 48.1±1.8 µM, respectively). These results indicate potential anti-inflammatory properties for this structural type of oligoflavonoids, especially for mansoin B (2).


Asunto(s)
Bignoniaceae/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Antiinflamatorios/farmacología , Brasil , Flavonoides/química , Frutas/química , Humanos , Lipopolisacáridos/farmacología , Estructura Molecular , Óxido Nítrico , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/farmacología
20.
Mar Drugs ; 11(7): 2595-615, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23873335

RESUMEN

Lithothamnion muelleri (Hapalidiaceae) is a marine red alga, which is a member of a group of algae with anti-inflammatory, antitumor, and immunomodulatory properties. The present study evaluated the effects of treatment with Lithothamnion muelleri extract (LM) in a model of acute graft-versus-host disease (GVHD), using a model of adoptive splenocyte transfer from C57BL/6 donors into B6D2F1 recipient mice. Mice treated with LM showed reduced clinical signs of disease and mortality when compared with untreated mice. LM-treated mice had reduced tissue injury, less bacterial translocation, and decreased levels of proinflammatory cytokines and chemokines (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5)). The polysaccharide-rich fraction derived from LM could inhibit leukocyte rolling and adhesion in intestinal venules, as assessed by intravital microscopy. LM treatment did not impair the beneficial effects of graft-versus-leukaemia (GVL). Altogether, our studies suggest that treatment with Lithothamnion muelleri has a potential therapeutic application in GVHD treatment.


Asunto(s)
Antiinflamatorios/inmunología , Enfermedad Injerto contra Huésped/inmunología , Inflamación/inmunología , Rhodophyta/inmunología , Animales , Adhesión Celular/inmunología , Línea Celular , Citocinas/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Intestinos/inmunología , Leucocitos/inmunología , Hepatopatías/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA