Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neuroendocrinol ; 28(5)2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26929121

RESUMEN

Oestrogens influence memory system bias in female rats such that high levels of oestrogen are associated with place (or spatial) memory use, and low oestrogen levels with response (or habitual) memory use. Moreover, striatal-dependent response memory is sensitive to dopamine transmission in the dorsal striatum, and oestrogens have been shown to affect dopamine release in that brain area. In the present study, the effects of oestrogens and dopamine transmission on multiple memory system bias were explored in ovariectomised rats receiving low or high 17ß-oestradiol replacement under saline, autoreceptor-activating doses of the dopamine D2 receptor agonist, apomorphine (50 and 80 µg/kg), or amphetamine (0.5 mg/kg) administration. Furthermore, dorsal striatal dopamine release was measured after administration of the same drug conditions using in vivo microdialysis. As expected, high oestradiol rats predominantly used place memory, whereas the opposite pattern was observed in low oestradiol rats. However, the high apomorphine dose statistically significantly altered memory bias in high oestradiol rats from predominant place to predominant response memory, with a similar trend in the low apomorphine dose and the amphetamine group. There was no effect of drugs on memory bias in low oestradiol rats. Rats with high oestradiol replacement receiving amphetamine exhibited greater dorsal striatal dopamine release than low oestradiol replacement rats, and this difference was amplified in the right hemisphere. Furthermore, a logistic regression analysis revealed that oestradiol, but not dorsal striatal dopamine levels, significantly predicted response memory bias. These findings provide further evidence that oestradiol modulates memory system bias, and also that memory bias is changed by systemic apomorphine administration. However, although oestradiol affects dopamine transmission in the dorsal striatum in a lateralised manner, this does not predict memory system bias.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/metabolismo , Estradiol/fisiología , Memoria/fisiología , Anfetamina/administración & dosificación , Animales , Apomorfina/administración & dosificación , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Estradiol/administración & dosificación , Femenino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria/efectos de los fármacos , Ovariectomía , Ratas Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiología , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología
2.
Proc Natl Acad Sci U S A ; 98(13): 7093-100, 2001 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-11416193

RESUMEN

Estrogens (E) and progestins regulate synaptogenesis in the CA1 region of the dorsal hippocampus during the estrous cycle of the female rat, and the functional consequences include changes in neurotransmission and memory. Synapse formation has been demonstrated by using the Golgi technique, dye filling of cells, electron microscopy, and radioimmunocytochemistry. N-methyl-d-aspartate (NMDA) receptor activation is required, and inhibitory interneurons play a pivotal role as they express nuclear estrogen receptor alpha (ERalpha) and show E-induced decreases of GABAergic activity. Although global decreases in inhibitory tone may be important, a more local role for E in CA1 neurons seems likely. The rat hippocampus expresses both ERalpha and ERbeta mRNA. At the light microscopic level, autoradiography shows cell nuclear [3H]estrogen and [125I]estrogen uptake according to a distribution that primarily reflects the localization of ERalpha-immunoreactive interneurons in the hippocampus. However, recent ultrastructural studies have revealed extranuclear ERalpha immunoreactivity (IR) within select dendritic spines on hippocampal principal cells, axon terminals, and glial processes, localizations that would not be detectable by using standard light microscopic methods. Based on recent studies showing that both types of ER are expressed in a form that activates second messenger systems, these findings support a testable model in which local, non-genomic regulation by estrogen participates along with genomic actions of estrogens in the regulation of synapse formation.


Asunto(s)
Estrógenos/fisiología , Neuronas/fisiología , Receptores de Estrógenos/fisiología , Sinapsis/fisiología , Animales , Estradiol/farmacología , Receptor alfa de Estrógeno , Estrógenos/farmacología , Estro , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Memoria , Modelos Neurológicos , Ratas , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/efectos de los fármacos , Transmisión Sináptica
3.
Endocrinology ; 142(3): 1284-9, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11181546

RESUMEN

Structural studies have shown that estrogens increase dendritic spine number in the dorsal CA1 field of rat hippocampus using Golgi impregnation as well as the number of dorsal CA1 synapses visualized via electron microscopy. The present study was carried out to further these findings by examining changes in the levels of pre- and postsynaptic proteins using radioimmunocytochemistry (RICC). In this study, 2 days of estradiol-benzoate treatment produced significant and comparable increases in synaptophysin, syntaxin, and spinophilin immunoreactivity (IR) in the CA1 region of the dorsal hippocampus of ovariectomized female rats. For spinophilin, IR was also increased in the hilar region of the dentate gyrus as well as CA3. In all cases, the nonsteroidal estrogen antagonist CI628, which has been previously shown to block spine formation, inhibited the effects of estrogen. However, these protein differences were not detected in whole hippocampus using Western blots. These findings add to a growing body of evidence that estrogens increase synapses in the CA1 region of hippocampus along with changes in previously unidentified sites. These results also suggest that RICC is a rapid and sensitive method for examining molecular changes in synaptic profiles in anatomically distinct brain regions.


Asunto(s)
Estradiol/farmacología , Hipocampo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Animales , Western Blotting , Femenino , Inmunohistoquímica/métodos , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Ovariectomía , Proteínas Qa-SNARE , Ratas , Ratas Sprague-Dawley , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA