Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Res ; 61(23): 8366-70, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11731409

RESUMEN

Although high frequencies of T lymphocytes specific for certain tumor-associated antigens have been detected in some cancer patients, increasing evidence suggests that these T cells may be functionally defective in vivo and fail to induce meaningful clinical responses. One strategy to overcome this limitation is to target novel antigens that are ignored during the natural antitumor immune response but are nevertheless capable of triggering effector T-cell responses against tumors after optimal presentation by antigen-presenting cells. Here, we show that the telomerase catalytic subunit (hTERT)-a nearly universal tumor antigen identified by epitope deduction rather than from patient immune responses-is immunologically ignored by patients despite progressive tumor burden. Nevertheless, HLA-A2-restricted CTLs against hTERT are equivalently induced ex vivo from patients and healthy individuals and efficiently kill human tumor cell lines and primary tumors. Thus, telomerase-specific T cells from cancer patients are spared functional inactivation because of immunological ignorance. These findings support clinical efforts to target the hTERT as a tumor antigen with broad therapeutic potential.


Asunto(s)
Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Telomerasa/inmunología , Adulto , Anciano , Proteínas de Unión al ADN , Epítopos de Linfocito T/inmunología , Femenino , Antígeno HLA-A2/inmunología , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/inmunología
2.
Cancer Res ; 61(24): 8838-44, 2001 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11751406

RESUMEN

The majority of adult human epithelial cancers exhibit evidence of genetic instability, and it is widely believed that the genetic instability manifested by aneuploidy or microsatellite instability plays an essential role in the genesis of these tumors. Indeed, most experimental models of cancer also show evidence of genomic instability. The resulting genetic chaos, which has widespread effects on many genes throughout the genome, confounds attempts to determine the precise cohort of genetic changes that are required for the transformation of normal human cells to a tumorigenic state. Here we show that genetic transformation of human kidney epithelial cells can occur in the absence of extensive aneuploidy, chromosomal translocations, and microsatellite instability. These observations demonstrate that the in vitro oncogenic transformation of human cells can proceed without widespread genomic instability.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias/genética , Línea Celular Transformada , Proteínas de Unión al ADN , Fibroblastos/citología , Fibroblastos/fisiología , Genes Inmediatos-Precoces , Genes ras , Genoma Humano , Humanos , Cariotipificación , Riñón/citología , Riñón/fisiología , Virus 40 de los Simios/genética , Telomerasa/genética
3.
Nat Cell Biol ; 3(8): 708-14, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11483955

RESUMEN

Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has a principal role in growth control through both its cytostatic effect on many different epithelial cell types and its ability to induce programmed cell death in a variety of other cell types. Here we have used a screen for proteins that interact physically with the cytoplasmic domain of the type II TGF-beta receptor to isolate the gene encoding Daxx - a protein associated with the Fas receptor that mediates activation of Jun amino-terminal kinase (JNK) and programmed cell death induced by Fas. The carboxy-terminal portion of Daxx functions as a dominant-negative inhibitor of TGF-beta-induced apoptosis in B-cell lymphomas, and antisense oligonucleotides to Daxx inhibit TGF-beta-induced apoptosis in mouse hepatocytes. Furthermore, Daxx is involved in mediating JNK activation by TGF-beta. Our findings associate Daxx directly with the TGF-beta apoptotic-signalling pathway, and make a biochemical connection between the receptors for TGF-beta and the apoptotic machinery.


Asunto(s)
Apoptosis/genética , Proteínas Portadoras/genética , División Celular/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Nucleares , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis/efectos de los fármacos , Células COS/citología , Células COS/efectos de los fármacos , Células COS/metabolismo , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Compartimento Celular/efectos de los fármacos , Compartimento Celular/genética , División Celular/efectos de los fármacos , Proteínas Co-Represoras , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Proteína Quinasa 8 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares , Oligonucleótidos Antisentido/farmacología , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Células Tumorales Cultivadas/citología , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/metabolismo , Técnicas del Sistema de Dos Híbridos , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo , Receptor fas/efectos de los fármacos , Receptor fas/genética , Receptor fas/metabolismo
4.
Nat Med ; 5(10): 1164-70, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10502820

RESUMEN

Telomerase is a ribonucleoprotein enzyme that maintains the protective structures at the ends of eukaryotic chromosomes, called telomeres. In most human somatic cells, telomerase expression is repressed, and telomeres shorten progressively with each cell division. In contrast, most human tumors express telomerase, resulting in stabilized telomere length. These observations indicate that telomere maintenance is essential to the proliferation of tumor cells. We show here that expression of a mutant catalytic subunit of human telomerase results in complete inhibition of telomerase activity, reduction in telomere length and death of tumor cells. Moreover, expression of this mutant telomerase eliminated tumorigenicity in vivo. These observations demonstrate that disruption of telomere maintenance limits cellular lifespan in human cancer cells, thus validating human telomerase reverse transcriptase as an important target for the development of anti-neoplastic therapies.


Asunto(s)
Mutación , Neoplasias Experimentales/prevención & control , ARN , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Apoptosis , Neoplasias de la Mama , Dominio Catalítico/genética , División Celular , Neoplasias del Colon , Proteínas de Unión al ADN , Diseño de Fármacos , Femenino , Vectores Genéticos , Humanos , Neoplasias Experimentales/enzimología , Neoplasias Ováricas , Retroviridae/genética , Inhibidores de la Transcriptasa Inversa , Telómero/metabolismo , Células Tumorales Cultivadas
5.
Nature ; 400(6743): 464-8, 1999 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-10440377

RESUMEN

During malignant transformation, cancer cells acquire genetic mutations that override the normal mechanisms controlling cellular proliferation. Primary rodent cells are efficiently converted into tumorigenic cells by the coexpression of cooperating oncogenes. However, similar experiments with human cells have consistently failed to yield tumorigenic transformants, indicating a fundamental difference in the biology of human and rodent cells. The few reported successes in the creation of human tumour cells have depended on the use of chemical or physical agents to achieve immortalization, the selection of rare, spontaneously arising immortalized cells, or the use of an entire viral genome. We show here that the ectopic expression of the telomerase catalytic subunit (hTERT) in combination with two oncogenes (the simian virus 40 large-T oncoprotein and an oncogenic allele of H-ras) results in direct tumorigenic conversion of normal human epithelial and fibroblast cells. These results demonstrate that disruption of the intracellular pathways regulated by large-T, oncogenic ras and telomerase suffices to create a human tumor cell.


Asunto(s)
Antígenos Transformadores de Poliomavirus/fisiología , Transformación Celular Neoplásica , ARN , Telomerasa/fisiología , Animales , Adhesión Celular , División Celular , Línea Celular , Transformación Celular Neoplásica/genética , Células Cultivadas , Proteínas de Unión al ADN , Células Epiteliales , Fibroblastos , Genes ras , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Telomerasa/genética , Telómero
6.
Nature ; 363(6424): 45-51, 1993 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-8479536

RESUMEN

The proteins Grb2-Sem-5, Shc and Sos have been implicated in the signalling pathway from tyrosine kinase receptors to Ras. Grb2-Sem-5 binds directly to murine Sos1, a Ras exchange factor, through two SH3 domains. Sos is also associated with ligand-activated tyrosine kinase receptors which bind Grb2-Sem-5, and with the Grb2-Sem-5 binding protein, Shc. Ectopic expression of Drosophila Sos stimulates morphological transformation of rodent fibroblasts. These data define a pathway by which tyrosine kinases act through Ras to control cell growth and differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans , Células Cultivadas , Clonación Molecular , ADN de Cadena Simple , Drosophila , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2 , Humanos , Ratones , Datos de Secuencia Molecular , Unión Proteica , Ratas , Proteínas Son Of Sevenless
7.
Cell ; 72(2): 233-45, 1993 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-8425220

RESUMEN

c-Myc (Myc) and Max proteins dimerize and bind DNA through basic-helix-loop-helix-leucine zipper motifs (b-HLH-LZ). Using a genetic approach, we demonstrate that binding to Max is essential for Myc transforming activity and that Myc homodimers are inactive. Mutants of Myc and Max that bind efficiently to each other but not to their wild-type partners were generated by either exchanging the HLH-LZ domains or reciprocally modifying LZ dimerization specificities. While transformation defective on their own, complementary mutants restore Myc transforming activity when coexpressed in cells. The HLH-LZ exchange mutants also have dominant negative activity on wild-type Myc function. In addition, wild-type max antagonizes myc function in a dose-dependent manner, presumably through competition of Max-Max and Myc-Max dimers for common target DNA sites. Therefore, Max can function as both suppressor and activator of Myc. A general model for the role of Myc and Max in growth control is discussed.


Asunto(s)
Transformación Celular Neoplásica , Proteínas de Unión al ADN/metabolismo , Genes myc , Mutagénesis Sitio-Dirigida , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Línea Celular , Proteínas de Unión al ADN/genética , Exones , Vectores Genéticos , Humanos , Leucina Zippers/genética , Leucina Zippers/fisiología , Sustancias Macromoleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/genética , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Transcripción Genética , Transfección
8.
Nature ; 359(6394): 423-6, 1992 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-1406955

RESUMEN

The c-myc protein (Myc) contains an amino-terminal transcriptional activation domain and a carboxy-terminal basic helix-loop-helix-leucine zipper (bHLH-Z) domain that directs dimerization of Myc with its partner, the max protein (Max), and promotes DNA binding to sites containing a CACGTG core consensus sequence. Despite these characteristics and the observation that Myc can modulate gene expression, a direct role for Myc or Max as transcription factors has never been demonstrated. Here we use Saccharomyces cerevisiae as an in vivo model system to show that the Myc protein is a sequence-specific transcriptional activator whose DNA binding is strictly dependent on dimerization with Max. Transactivation is mediated by the amino-terminal domain of Myc. We find that Max homodimers bind to the same DNA sequence as Myc+Max but that they fail to transactivate and thus can antagonize Myc+Max function. We also show that the Max HLH-Z domain has a higher affinity for the Myc HLH-Z domain than for itself, and suggest that the heterodimeric Myc+Max activator forms preferentially at equilibrium.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Transcripción , Activación Transcripcional/fisiología , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , ADN/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae , Transcripción Genética/fisiología , beta-Galactosidasa/biosíntesis
9.
Mol Cell Biol ; 10(9): 4961-6, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2201910

RESUMEN

Amino acids 106 to 143 and 354 to 433 of the human c-myc protein (439 amino acids) were shown to be required for the protein to suppress c-myc gene transcription and were found to exactly overlap with those necessary for c-myc to cooperate with ras oncogenes in the transformation of rat embryo fibroblasts. The essential carboxyl-terminal region harbors structural motifs (a basic region, a helix-loop-helix motif, and a "leucine zipper"), which, in other proteins, can mediate dimerization and sequence-specific DNA binding.


Asunto(s)
Genes ras , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proto-Oncogenes , Supresión Genética , Animales , Línea Celular , Humanos , Mutación , Conformación Proteica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-myc , Ratas , Transcripción Genética
10.
EMBO J ; 9(4): 1113-21, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2182320

RESUMEN

The introduction of activated c-myc and v-myc genes into a variety of non-established and established cells results in the suppression of endogenous c-myc expression. As measured in Rat-1 fibroblasts, the suppression occurs at the level of transcriptional initiation. Moreover, the extent of the down-regulation is proportional to the cellular concentration of c-myc protein, and the critical concentration range in which the endogenous c-myc RNA is effectively suppressed corresponds to that found in non-transformed cells. In addition, the autoregulatory mechanism is not only dependent on c-myc protein, but also requires additional trans-acting factors. These results support a role for c-myc in the regulation of cellular gene transcription and suggest that a negative feedback mechanism can act as a homeostatic regulator of c-myc expression in vivo.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas/genética , Proto-Oncogenes , Supresión Genética , Transcripción Genética , Animales , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Retroalimentación , Homeostasis , Immunoblotting , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc , Ratas , Mapeo Restrictivo , Retroviridae/genética , Ribonucleasas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA