Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Transl Oncol ; 49: 102109, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39217851

RESUMEN

BACKGROUND: Despite some recent advances, pancreatic ductal adenocarcinoma (PDAC) remains a growing oncological challenge. New drugs capable of targeting more than one oncogenic pathway may be one way to improve patient outcomes. This study characterizes the effectiveness of Metavert a first-in-class dual inhibitor of GSK3-ß and histone deacetylase in treating PDAC as a single agent or in combination with standard cytotoxics. METHODS: Thirty-six Patient-Derived Organoids (hPDOs) characterised by RNASeq and whole exome sequencing were treated with Metavert alone or in combination with standard cytotoxics. Transcriptomic signatures (TS) representing sensitivity to Metavert alone or sensitivity to Metavert + irinotecan (IR) were evaluated in 47 patient samples, chemo-naïve in 26 and post-chemotherapy in 21 (gemcitabine=5; FOLFIRINOX=14, both=2) with companion multiplexed immunofluorescence and RNASeq data. RESULTS: Metavert combined with gemcitabine, irinotecan, 5FU, oxaliplatin, and paclitaxel was synergistic in the hPDOs. Basal-subtype hPDOs were more sensitive to Metavert alone whereas the Metavert+IR combination exhibited synergy in Classical-subtype hPDOs with increased apoptosis and autophagy. hPDO-derived TS evaluated in PDAC tissues demonstrated that Metavert-TSHi samples were enriched for mRNA splicing and DNA repair processes; they were associated with Basal-like tissues but also with GATA6+ve-chemo-naïve samples and were higher following gemcitabine but not FOLFIRINOX treatment. In contrast, Metavert+IR-TSHI samples were enriched for TP53 pathways; they were associated with Classical-like pretreatment samples and with GATA6+ve/KRT17+ve hybrid cell types following FOLFIRINOX, but not gemcitabine treatment, and were unrelated to transcriptional subtypes. CONCLUSIONS: Metavert as a single agent and in combination with irinotecan offers novel strategies for treating pancreatic cancer.

2.
JMIR Res Protoc ; 13: e58705, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230952

RESUMEN

BACKGROUND: Understanding the similarities of patients with cancer is essential to advancing personalized medicine, improving patient outcomes, and developing more effective and individualized treatments. It enables researchers to discover important patterns, biomarkers, and treatment strategies that can have a significant impact on cancer research and oncology. In addition, the identification of previously successfully treated patients supports oncologists in making treatment decisions for a new patient who is clinically or molecularly similar to the previous patient. OBJECTIVE: The planned review aims to systematically summarize, map, and describe existing evidence to understand how patient similarity is defined and used in cancer research and clinical care. METHODS: To systematically identify relevant studies and to ensure reproducibility and transparency of the review process, a comprehensive literature search will be conducted in several bibliographic databases, including Web of Science, PubMed, LIVIVIVO, and MEDLINE, covering the period from 1998 to February 2024. After the initial duplicate deletion phase, a study selection phase will be applied using Rayyan, which consists of 3 distinct steps: title and abstract screening, disagreement resolution, and full-text screening. To ensure the integrity and quality of the selection process, each of these steps is preceded by a pilot testing phase. This methodological process will culminate in the presentation of the final research results in a structured form according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart. The protocol has been registered in the Journal of Medical Internet Research. RESULTS: This protocol outlines the methodologies used in conducting the scoping review. A search of the specified electronic databases and after removing duplicates resulted in 1183 unique records. As of March 2024, the review process has moved to the full-text evaluation phase. At this stage, data extraction will be conducted using a pretested chart template. CONCLUSIONS: The scoping review protocol, centered on these main concepts, aims to systematically map the available evidence on patient similarity among patients with cancer. By defining the types of data sources, approaches, and methods used in the field, and aligning these with the research questions, the review will provide a foundation for future research and clinical application in personalized cancer care. This protocol will guide the literature search, data extraction, and synthesis of findings to achieve the review's objectives. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/58705.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Proyectos de Investigación , Medicina de Precisión/métodos , Reproducibilidad de los Resultados
3.
Cell Genom ; 4(9): 100639, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39216474

RESUMEN

The characterization of somatic genomic variation associated with the biology of tumors is fundamental for cancer research and personalized medicine, as it guides the reliability and impact of cancer studies and genomic-based decisions in clinical oncology. However, the quality and scope of tumor genome analysis across cancer research centers and hospitals are currently highly heterogeneous, limiting the consistency of tumor diagnoses across hospitals and the possibilities of data sharing and data integration across studies. With the aim of providing users with actionable and personalized recommendations for the overall enhancement and harmonization of somatic variant identification across research and clinical environments, we have developed ONCOLINER. Using specifically designed mosaic and tumorized genomes for the analysis of recall and precision across somatic SNVs, insertions or deletions (indels), and structural variants (SVs), we demonstrate that ONCOLINER is capable of improving and harmonizing genome analysis across three state-of-the-art variant discovery pipelines in genomic oncology.


Asunto(s)
Genómica , Neoplasias , Humanos , Genómica/métodos , Neoplasias/genética , Programas Informáticos , Medicina de Precisión/métodos , Genoma Humano/genética , Mutación INDEL , Polimorfismo de Nucleótido Simple , Oncología Médica/métodos
4.
NPJ Syst Biol Appl ; 10(1): 57, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802379

RESUMEN

Mass spectrometry imaging (MSI) allows to study cancer's intratumoral heterogeneity through spatially-resolved peptides, metabolites and lipids. Yet, in biomedical research MSI is rarely used for biomarker discovery. Besides its high dimensionality and multicollinearity, mass spectrometry (MS) technologies typically output mass-to-charge ratio values but not the biochemical compounds of interest. Our framework makes particularly low-abundant signals in MSI more accessible. We utilized convolutional autoencoders to aggregate features associated with tumor hypoxia, a parameter with significant spatial heterogeneity, in cancer xenograft models. We highlight that MSI captures these low-abundant signals and that autoencoders can preserve them in their latent space. The relevance of individual hyperparameters is demonstrated through ablation experiments, and the contribution from original features to latent features is unraveled. Complementing MSI with tandem MS from the same tumor model, multiple hypoxia-associated peptide candidates were derived. Compared to random forests alone, our autoencoder approach yielded more biologically relevant insights for biomarker discovery.


Asunto(s)
Espectrometría de Masas , Neoplasias , Péptidos , Humanos , Péptidos/metabolismo , Animales , Neoplasias/metabolismo , Ratones , Espectrometría de Masas/métodos , Hipoxia Tumoral , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Hipoxia/metabolismo
5.
Cancer Res Commun ; 4(2): 516-529, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38349551

RESUMEN

Epithelial-to-mesenchymal transition (EMT) in cancer cells confers migratory abilities, a crucial aspect in the metastasis of tumors that frequently leads to death. In multiple studies, authors proposed gene expression signatures for EMT, stemness, or mesenchymality of tumors based on bulk tumor expression profiling. However, recent studies suggested that noncancerous cells from the microenvironment or macroenvironment heavily influence such signature profiles. Here, we strengthen these findings by investigating 11 published and frequently referenced gene expression signatures that were proposed to describe EMT-related (EMT, mesenchymal, or stemness) characteristics in various cancer types. By analyses of bulk, single-cell, and pseudobulk expression data, we show that the cell type composition of a tumor sample frequently dominates scores of these EMT-related signatures. A comprehensive, integrated analysis of bulk RNA sequencing (RNA-seq) and single-cell RNA-seq data shows that stromal cells, most often fibroblasts, are the main drivers of EMT-related signature scores. We call attention to the risk of false conclusions about tumor properties when interpreting EMT-related signatures, especially in a clinical setting: high patient scores of EMT-related signatures or calls of "stemness subtypes" often result from low cancer cell content in tumor biopsies rather than cancer cell-specific stemness or mesenchymal/EMT characteristics. SIGNIFICANCE: Cancer self-renewal and migratory abilities are often characterized via gene module expression profiles, also called EMT or stemness gene expression signatures. Using published clinical tumor samples, cancer cell lines, and single cancer cells, we highlight the dominating influence of noncancer cells in low cancer cell content biopsies on their scores. We caution on their application for low cancer cell content clinical cancer samples with the intent to assign such characteristics or subtypes.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Neoplasias/genética , Transición Epitelial-Mesenquimal/genética , Células del Estroma/patología , Microambiente Tumoral/genética
6.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38226976

RESUMEN

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Asunto(s)
Linfocitos T CD8-positivos , Linfocitos T Citotóxicos , Humanos , Receptores ErbB , Tejido Adiposo , Ciclo Celular
7.
Cell Rep ; 42(12): 113266, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37979172

RESUMEN

Chromosome instability (CIN) contributes to resistance to therapies and tumor evolution. Although natural killer (NK) cells can eliminate cells with complex karyotypes, high-CIN human tumors have an immunosuppressive phenotype. To understand which CIN-associated molecular features alter immune recognition during tumor evolution, we overexpress Polo-like kinase 1 (Plk1) in a Her2+ breast cancer model. These high-CIN tumors activate a senescence-associated secretory phenotype (SASP), upregulate PD-L1 and CD206, and induce non-cell-autonomous nuclear factor κB (NF-κß) signaling, facilitating immune evasion. Single-cell RNA sequencing from pre-neoplastic mammary glands unveiled the presence of Arg1+ macrophages, NK cells with reduced effector functions, and increased resting regulatory T cell infiltration. We further show that high PLK1-expressing human breast tumors display gene expression patterns associated with SASP, NF-κß signaling, and immune suppression. These findings underscore the need to understand the immune landscape in CIN tumors to identify more effective therapies, potentially combining immune checkpoint or NF-κß inhibitors with current treatments.


Asunto(s)
Neoplasias de la Mama , Inestabilidad Cromosómica , Tolerancia Inmunológica , Quinasa Tipo Polo 1 , Escape del Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Humanos , Animales , Ratones , Quinasa Tipo Polo 1/genética , Quinasa Tipo Polo 1/metabolismo , Línea Celular Tumoral , Receptor ErbB-2/genética , FN-kappa B/metabolismo , Antígeno B7-H1/metabolismo , Receptor de Manosa/metabolismo , Células Asesinas Naturales/inmunología , Xenoinjertos , Células MCF-7 , Femenino
8.
Nat Cancer ; 4(9): 1362-1381, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37679568

RESUMEN

Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.


Asunto(s)
Adenocarcinoma , Terapia Neoadyuvante , Humanos , Citocromo P-450 CYP3A , Adyuvantes Inmunológicos , Queratina-17 , Fenotipo
9.
Gut ; 72(12): 2344-2353, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37709492

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy. Differentiation from chronic pancreatitis (CP) is currently inaccurate in about one-third of cases. Misdiagnoses in both directions, however, have severe consequences for patients. We set out to identify molecular markers for a clear distinction between PDAC and CP. DESIGN: Genome-wide variations of DNA-methylation, messenger RNA and microRNA level as well as combinations thereof were analysed in 345 tissue samples for marker identification. To improve diagnostic performance, we established a random-forest machine-learning approach. Results were validated on another 48 samples and further corroborated in 16 liquid biopsy samples. RESULTS: Machine-learning succeeded in defining markers to differentiate between patients with PDAC and CP, while low-dimensional embedding and cluster analysis failed to do so. DNA-methylation yielded the best diagnostic accuracy by far, dwarfing the importance of transcript levels. Identified changes were confirmed with data taken from public repositories and validated in independent sample sets. A signature of six DNA-methylation sites in a CpG-island of the protein kinase C beta type gene achieved a validated diagnostic accuracy of 100% in tissue and in circulating free DNA isolated from patient plasma. CONCLUSION: The success of machine-learning to identify an effective marker signature documents the power of this approach. The high diagnostic accuracy of discriminating PDAC from CP could have tremendous consequences for treatment success, once the result from still a limited number of liquid biopsy samples would be confirmed in a larger cohort of patients with suspected pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis Crónica , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/diagnóstico , Pancreatitis Crónica/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Metilación de ADN , ADN , Biomarcadores de Tumor/genética , Neoplasias Pancreáticas
10.
Front Immunol ; 14: 1194745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609075

RESUMEN

Background: Robust immune cell gene expression signatures are central to the analysis of single cell studies. Nearly all known sets of immune cell signatures have been derived by making use of only single gene expression datasets. Utilizing the power of multiple integrated datasets could lead to high-quality immune cell signatures which could be used as superior inputs to machine learning-based cell type classification approaches. Results: We established a novel workflow for the discovery of immune cell type signatures based primarily on gene-versus-gene expression similarity. It leverages multiple datasets, here seven single cell expression datasets from six different cancer types and resulted in eleven immune cell type-specific gene expression signatures. We used these to train random forest classifiers for immune cell type assignment for single-cell RNA-seq datasets. We obtained similar or better prediction results compared to commonly used methods for cell type assignment in independent benchmarking datasets. Our gene signature set yields higher prediction scores than other published immune cell type gene sets in random forest-based cell type classification. We further demonstrate how our approach helps to avoid bias in downstream statistical analyses by re-analysis of a published IFN stimulation experiment. Discussion and conclusion: We demonstrated the quality of our immune cell signatures and their strong performance in a random forest-based cell typing approach. We argue that classifying cells based on our comparably slim sets of genes accompanied by a random forest-based approach not only matches or outperforms widely used published approaches. It also facilitates unbiased downstream statistical analyses of differential gene expression between cell types for significantly more genes compared to previous cell classification algorithms.


Asunto(s)
Algoritmos , Bosques Aleatorios , Benchmarking , Aprendizaje Automático , Expresión Génica
11.
Acta Neuropathol ; 146(3): 499-514, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495858

RESUMEN

Immunodeficiency-associated primary CNS lymphoma (PCNSL) represents a distinct clinicopathological entity, which is typically Epstein-Barr virus-positive (EBV+) and carries an inferior prognosis. Genetic alterations that characterize EBV-related CNS lymphomagenesis remain unclear precluding molecular classification and targeted therapies. In this study, a comprehensive genetic analysis of 22 EBV+ PCNSL, therefore, integrated clinical and pathological information with exome and RNA sequencing (RNASeq) data. EBV+ PCNSL with germline controls carried a median of 55 protein-coding single nucleotide variants (SNVs; range 24-217) and 2 insertions/deletions (range 0-22). Genetic landscape was largely shaped by aberrant somatic hypermutation with a median of 41.01% (range 31.79-53.49%) of SNVs mapping to its target motifs. Tumors lacked established SNVs (MYD88, CD79B, PIM1) and copy number variants (CDKN2A, HLA loss) driving EBV- PCNSL. Instead, EBV+ PCNSL were characterized by SOCS1 mutations (26%), predicted to disinhibit JAK/STAT signaling, and mutually exclusive gain-of-function NOTCH pathway SNVs (26%). Copy number gains were enriched on 11q23.3, a locus directly targeted for chromosomal aberrations by EBV, that includes SIK3 known to protect from cytotoxic T-cell responses. Losses covered 5q31.2 (STING), critical for sensing viral DNA, and 17q11 (NF1). Unsupervised clustering of RNASeq data revealed two distinct transcriptional groups, that shared strong expression of CD70 and IL1R2, previously linked to tolerogenic tumor microenvironments. Correspondingly, deconvolution of bulk RNASeq data revealed elevated M2-macrophage, T-regulatory cell, mast cell and monocyte fractions in EBV+ PCNSL. In addition to novel insights into the pathobiology of EBV+ PCNSL, the data provide the rationale for the exploration of targeted therapies including JAK-, NOTCH- and CD70-directed approaches.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Mutación , Pronóstico , Linfoma/genética , Microambiente Tumoral
12.
Gastroenterology ; 165(4): 891-908.e14, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37263303

RESUMEN

BACKGROUND & AIMS: As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS: We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS: We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS: Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma Ductal Pancreático , Enfermedades del Sistema Inmune , Neoplasias Pancreáticas , Humanos , Multiómica , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias Pancreáticas
14.
Nat Genet ; 55(4): 619-630, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973454

RESUMEN

Neuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.


Asunto(s)
Neuroblastoma , Lactante , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Pronóstico , Secuenciación Completa del Genoma
15.
Mol Cell ; 83(4): 622-636.e10, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36657444

RESUMEN

Despite extensive studies on the chromatin landscape of exhausted T cells, the transcriptional wiring underlying the heterogeneous functional and dysfunctional states of human tumor-infiltrating lymphocytes (TILs) is incompletely understood. Here, we identify gene-regulatory landscapes in a wide breadth of functional and dysfunctional CD8+ TIL states covering four cancer entities using single-cell chromatin profiling. We map enhancer-promoter interactions in human TILs by integrating single-cell chromatin accessibility with single-cell RNA-seq data from tumor-entity-matching samples and prioritize cell-state-specific genes by super-enhancer analysis. Besides revealing entity-specific chromatin remodeling in exhausted TILs, our analyses identify a common chromatin trajectory to TIL dysfunction and determine key enhancers, transcriptional regulators, and deregulated genes involved in this process. Finally, we validate enhancer regulation at immunotherapeutically relevant loci by targeting non-coding regulatory elements with potent CRISPR activators and repressors. In summary, our study provides a framework for understanding and manipulating cell-state-specific gene-regulatory cues from human tumor-infiltrating lymphocytes.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Neoplasias/genética , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica , Cromatina/genética , Linfocitos Infiltrantes de Tumor , Elementos de Facilitación Genéticos
17.
BMC Med ; 20(1): 367, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36274133

RESUMEN

BACKGROUND: Structured and harmonized implementation of molecular tumor boards (MTB) for the clinical interpretation of molecular data presents a current challenge for precision oncology. Heterogeneity in the interpretation of molecular data was shown for patients even with a limited number of molecular alterations. Integration of high-dimensional molecular data, including RNA- (RNA-Seq) and whole-exome sequencing (WES), is expected to further complicate clinical application. To analyze challenges for MTB harmonization based on complex molecular datasets, we retrospectively compared clinical interpretation of WES and RNA-Seq data by two independent molecular tumor boards. METHODS: High-dimensional molecular cancer profiling including WES and RNA-Seq was performed for patients with advanced solid tumors, no available standard therapy, ECOG performance status of 0-1, and available fresh-frozen tissue within the DKTK-MASTER Program from 2016 to 2018. Identical molecular profiling data of 40 patients were independently discussed by two molecular tumor boards (MTB) after prior annotation by specialized physicians, following independent, but similar workflows. Identified biomarkers and resulting treatment options were compared between the MTBs and patients were followed up clinically. RESULTS: A median of 309 molecular aberrations from WES and RNA-Seq (n = 38) and 82 molecular aberrations from WES only (n = 3) were considered for clinical interpretation for 40 patients (one patient sequenced twice). A median of 3 and 2 targeted treatment options were identified per patient, respectively. Most treatment options were identified for receptor tyrosine kinase, PARP, and mTOR inhibitors, as well as immunotherapy. The mean overlap coefficient between both MTB was 66%. Highest agreement rates were observed with the interpretation of single nucleotide variants, clinical evidence levels 1 and 2, and monotherapy whereas the interpretation of gene expression changes, preclinical evidence levels 3 and 4, and combination therapy yielded lower agreement rates. Patients receiving treatment following concordant MTB recommendations had significantly longer overall survival than patients receiving treatment following discrepant recommendations or physician's choice. CONCLUSIONS: Reproducible clinical interpretation of high-dimensional molecular data is feasible and agreement rates are encouraging, when compared to previous reports. The interpretation of molecular aberrations beyond single nucleotide variants and preclinically validated biomarkers as well as combination therapies were identified as additional difficulties for ongoing harmonization efforts.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión/métodos , Estudios de Factibilidad , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Estudios Retrospectivos , ARN , Proteínas Tirosina Quinasas , Nucleótidos/uso terapéutico
18.
Liver Int ; 42(12): 2855-2870, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35983950

RESUMEN

Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-xL and Mcl-1. Expression of Bcl-xL , Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-xL and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl-xL (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-xL induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-xL and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-xL in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-xL as a key protein in cell death resistance of CCA and may pave the way for clinical application.


Asunto(s)
Colangiocarcinoma , Proteína bcl-X , Humanos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Línea Celular Tumoral , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/tratamiento farmacológico , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2/genética
19.
Nat Commun ; 13(1): 4296, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918316

RESUMEN

The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5' cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.


Asunto(s)
Células Epiteliales , Transcriptoma , Diferenciación Celular/genética , Tolerancia Central , Células Epiteliales/metabolismo , Epítopos/metabolismo , Humanos , Timo
20.
Nat Commun ; 13(1): 4485, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918329

RESUMEN

The benefit of molecularly-informed therapies in cancer of unknown primary (CUP) is unclear. Here, we use comprehensive molecular characterization by whole genome/exome, transcriptome and methylome analysis in 70 CUP patients to reveal substantial mutational heterogeneity with TP53, MUC16, KRAS, LRP1B and CSMD3 being the most frequently mutated known cancer-related genes. The most common fusion partner is FGFR2, the most common focal homozygous deletion affects CDKN2A. 56/70 (80%) patients receive genomics-based treatment recommendations which are applied in 20/56 (36%) cases. Transcriptome and methylome data provide evidence for the underlying entity in 62/70 (89%) cases. Germline analysis reveals five (likely) pathogenic mutations in five patients. Recommended off-label therapies translate into a mean PFS ratio of 3.6 with a median PFS1 of 2.9 months (17 patients) and a median PFS2 of 7.8 months (20 patients). Our data emphasize the clinical value of molecular analysis and underline the need for innovative, mechanism-based clinical trials.


Asunto(s)
Neoplasias Primarias Desconocidas , Epigenómica , Genómica , Homocigoto , Humanos , Mutación , Neoplasias Primarias Desconocidas/tratamiento farmacológico , Neoplasias Primarias Desconocidas/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA