Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1397864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846086

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a rare genetic disorder characterised by numerous renal cysts, the progressive expansion of which can impact kidney function and lead eventually to renal failure. Tolvaptan is the only disease-modifying drug approved for the treatment of ADPKD, however its poor side effect and safety profile necessitates the need for the development of new therapeutics in this area. Using a combination of transcriptomic and machine learning computational drug discovery tools, we predicted that a number of existing drugs could have utility in the treatment of ADPKD, and subsequently validated several of these drug predictions in established models of disease. We determined that the anthelmintic mebendazole was a potent anti-cystic agent in human cellular and in vivo models of ADPKD, and is likely acting through the inhibition of microtubule polymerisation and protein kinase activity. These findings demonstrate the utility of combining computational approaches to identify and understand potential new treatments for traditionally underserved rare diseases.

2.
Brain Commun ; 2(2): fcaa146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33543132

RESUMEN

In addition to increased aberrant protein aggregation, inflammation has been proposed as a key element in the pathogenesis and progression of Alzheimer's disease. How inflammation interacts with other disease pathways and how protein aggregation increases during disease are not clear. We used single-molecule imaging approaches and membrane permeabilization assays to determine the effect of chronic exposure to tumour necrosis factor, a master proinflammatory cytokine, on protein aggregation in human-induced pluripotent stem cell-derived neurons harbouring monogenic Alzheimer's disease mutations. We report that exposure of Alzheimer's disease neurons, but not control neurons, to tumour necrosis factor induces substantial production of extracellular protein aggregates. Aggregates from Alzheimer's disease neurons are composed of amyloid-ß and α-synuclein and induce significant permeabilization of lipid membranes in an assay of pathogenicity. These findings provide support for a causal relationship between two crucial processes in Alzheimer's disease pathogenesis and suggest that targeting inflammation, particularly tumour necrosis factor, may have beneficial downstream effects on ameliorating aberrant protein aggregation and accumulation.

4.
Neurosci Lett ; 508(2): 119-22, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22227298

RESUMEN

O-1602 is an atypical cannabinoid that acts as an agonist at GPR55, a g protein-coupled receptor that previous studies have indicated may have a pronociceptive role in neuropathic pain. We administered O-1602 to both naive rats and rats that had undergone chronic constriction injury surgery. O-1602 did not cause any changes in hind paw responses to Von Frey hair testing in naive rats. However, O-1602 reversed the desensitising effects of ETOH, which was used as an active and opposing vehicle. Our results are consistent with the hypothesis that GPR55 has a pronociceptive role in neuropathic pain.


Asunto(s)
Cannabinoides/toxicidad , Ciclohexanos/toxicidad , Neuralgia/etiología , Resorcinoles/toxicidad , Animales , Cannabidiol/análogos & derivados , Constricción , Miembro Posterior , Hiperalgesia/etiología , Masculino , Modelos Animales , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA