Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 4(7): e6281, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19609450

RESUMEN

Yersinia pestis, the causative agent of plague, encodes several essential virulence factors on a 70 kb plasmid, including the Yersinia outer proteins (Yops) and a multifunctional virulence antigen (V). V is uniquely able to inhibit the host immune response; aid in the expression, secretion, and injection of the cytotoxic Yops via a type III secretion system (T3SS)-dependent mechanism; be secreted extracellularly; and enter the host cell by a T3SS-independent mechanism, where its activity is unknown. To elucidate the intracellular trafficking and target(s) of V, time-course experiments were performed with macrophages (MPhis) infected with Y. pestis or Y. pseudotuberculosis at intervals from 5 min to 6 h. The trafficking pattern was discerned from results of parallel microscopy, immunoblotting, and flow cytometry experiments. The MPhis were incubated with fluorescent or gold conjugated primary or secondary anti-V (antibodies [Abs]) in conjunction with organelle-associated Abs or dyes. The samples were observed for co-localization by immuno-fluorescence and electron microscopy. For fractionation studies, uninfected and infected MPhis were lysed and subjected to density gradient centrifugation coupled with immunoblotting with Abs to V or to organelles. Samples were also analyzed by flow cytometry after lysis and dual-staining with anti-V and anti-organelle Abs. Our findings indicate a co-localization of V with (1) endosomal proteins between 10-45 min of infection, (2) lysosomal protein(s) between 1-2 h of infection, (3) mitochondrial proteins between 2.5-3 h infection, and (4) Golgi protein(s) between 4-6 h of infection. Further studies are being performed to determine the specific intracellular interactions and role in pathogenesis of intracellularly localized V.


Asunto(s)
Antígenos Bacterianos/metabolismo , Peste/inmunología , Yersinia pestis/inmunología , Transporte Biológico , Western Blotting , Citometría de Flujo , Células HeLa , Humanos , Macrófagos/inmunología , Virulencia , Yersinia pestis/patogenicidad
2.
Mol Microbiol ; 64(6): 1466-85, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17555434

RESUMEN

Burkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown. Here we show with expression profiling that overexpression of virAG resulted in transcriptional activation of approximately 60 genes, including some involved in capsule production, actin-based intracellular motility, and type VI secretion (T6S). The 15 genes encoding the major sugar component of the homopolymeric capsule were up-expressed > 2.5-fold, but capsule was still produced in the absence of virAG. Actin tail formation required virAG as well as bimB, bimC and bimE, three previously uncharacterized genes that were activated four- to 15-fold when VirAG was overproduced. Surprisingly, actin polymerization was found to be dispensable for virulence in hamsters. In contrast, genes encoding a T6S system were up-expressed as much as 30-fold and mutations in this T6S gene cluster resulted in strains that were avirulent in hamsters. SDS-PAGE and mass spectrometry demonstrated that BMAA0742 was secreted by the T6S system when virAG was overexpressed. Purified His-tagged BMAA0742 was recognized by glanders antiserum from a horse, a human and mice, indicating that this Hcp-family protein is produced in vivo during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia mallei/patogenicidad , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Muermo/microbiología , Animales , Proteínas Bacterianas/genética , Burkholderia mallei/genética , Burkholderia mallei/metabolismo , Línea Celular , Cricetinae , Femenino , Muermo/mortalidad , Caballos , Humanos , Macrófagos/microbiología , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA