Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Sci Transl Med ; 16(729): eadh8335, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198568

RESUMEN

Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.


Asunto(s)
Nacimiento Prematuro , Recién Nacido , Embarazo , Humanos , Femenino , Placenta , Transducción de Señal , Análisis de Secuencia de ARN , Parto
2.
Am J Obstet Gynecol ; 230(4): 450.e1-450.e18, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37806612

RESUMEN

BACKGROUND: Intravascular inflammation and an antiangiogenic state have been implicated in the pathophysiology of preeclampsia. On the basis of the profiles of their angiogenic/antiangiogenic factors, women with preeclampsia at term may be classified into 2 subgroups with different characteristics and prevalence of adverse outcomes. This study was undertaken to examine whether these 2 subgroups of preeclampsia at term also show differences in their profiles of intravascular inflammation. OBJECTIVE: This study aimed to determine the plasma profiles of cytokines and chemokines in women with preeclampsia at term who had a normal or an abnormal angiogenic profile. STUDY DESIGN: A nested case-control study was conducted to include women classified into 3 groups: women with an uncomplicated pregnancy (n=213) and women with preeclampsia at term with a normal (n=55) or an abnormal (n=41) angiogenic profile. An abnormal angiogenic profile was defined as a plasma ratio of placental growth factor and soluble fms-like tyrosine kinase-1 multiple of the median <10th percentile for gestational age. Concentrations of cytokines were measured by multiplex immunoassays. RESULTS: Women with preeclampsia at term and an abnormal angiogenic profile showed evidence of the greatest intravascular inflammation among the study groups. These women had higher plasma concentrations of 5 cytokines (interleukin-6, interleukin-8, interleukin-12/interleukin-23p40, interleukin-15, and interleukin-16) and 7 chemokines (eotaxin, eotaxin-3, interferon-γ inducible protein-10, monocyte chemotactic protein-4, macrophage inflammatory protein-1ß, macrophage-derived chemokine, and thymus and activation-regulated chemokine compared to women with an uncomplicated pregnancy. By contrast, women with preeclampsia at term and a normal angiogenic profile, compared to women with an uncomplicated pregnancy, had only a higher plasma concentration of monocyte chemotactic protein-4. A correlation between severity of the antiangiogenic state, blood pressure, and plasma concentrations of a subset of cytokines was observed. CONCLUSION: Term preeclampsia can be classified into 2 clusters. One is characterized by an antiangiogenic state coupled with an excessive inflammatory process, whereas the other has neither of these features. These findings further support the heterogeneity of preeclampsia at term and may explain the distinct clinical outcomes.


Asunto(s)
Preeclampsia , Embarazo , Femenino , Humanos , Factor de Crecimiento Placentario , Citocinas , Estudios de Casos y Controles , Inductores de la Angiogénesis , Biomarcadores , Inflamación , Proteínas Quimioatrayentes de Monocitos , Receptor 1 de Factores de Crecimiento Endotelial Vascular
3.
Biochem Soc Trans ; 51(4): 1559-1569, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37622523

RESUMEN

The ability to remodel and move cellular membranes, and the cargoes regulated by these membranes, allows for specialised functions to occur in distinct regions of the cell in a process known as cellular polarisation. The ability to collectively co-ordinate such polarisation between cells allows for the genesis of multicellularity, such as the formation of organs. During tumourigenesis, the rules for such tissue polarisation become dysregulated, allowing for collective polarity rearrangements that can drive metastasis. In this review, we focus on how membrane trafficking underpins collective cell invasion and metastasis in cancer. We examine this through the lens of the ADP-ribosylation factor (ARF) subfamily of small GTPases, focusing on how the ARF regulatory network - ARF activators, inactivators, effectors, and modifications - controls ARF GTPase function.


Asunto(s)
Factores de Ribosilacion-ADP , Carcinogénesis , Humanos , Membrana Celular , Transformación Celular Neoplásica
4.
EMBO J ; 42(18): e113987, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37577760

RESUMEN

Dysregulation of the PI3K/AKT pathway is a common occurrence in high-grade serous ovarian carcinoma (HGSOC), with the loss of the tumour suppressor PTEN in HGSOC being associated with poor prognosis. The cellular mechanisms of how PTEN loss contributes to HGSOC are largely unknown. We here utilise time-lapse imaging of HGSOC spheroids coupled to a machine learning approach to classify the phenotype of PTEN loss. PTEN deficiency induces PI(3,4,5)P3 -rich and -dependent membrane protrusions into the extracellular matrix (ECM), resulting in a collective invasion phenotype. We identify the small GTPase ARF6 as a crucial vulnerability of HGSOC cells upon PTEN loss. Through a functional proteomic CRISPR screen of ARF6 interactors, we identify the ARF GTPase-activating protein (GAP) AGAP1 and the ECM receptor ß1-integrin (ITGB1) as key ARF6 interactors in HGSOC regulating PTEN loss-associated invasion. ARF6 functions to promote invasion by controlling the recycling of internalised, active ß1-integrin to maintain invasive activity into the ECM. The expression of the CYTH2-ARF6-AGAP1 complex in HGSOC patients is inversely associated with outcome, allowing the identification of patient groups with improved versus poor outcome. ARF6 may represent a therapeutic vulnerability in PTEN-depleted HGSOC.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias Ováricas , Humanos , Femenino , Integrinas/metabolismo , Proteómica , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
5.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880595

RESUMEN

ARF GTPases are central regulators of membrane trafficking that control local membrane identity and remodeling facilitating vesicle formation. Unraveling their function is complicated by the overlapping association of ARFs with guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and numerous interactors. Through a functional genomic screen of three-dimensional (3D) prostate cancer cell behavior, we explore the contribution of ARF GTPases, GEFs, GAPs, and interactors to collective invasion. This revealed that ARF3 GTPase regulates the modality of invasion, acting as a switch between leader cell-led chains of invasion or collective sheet movement. Functionally, the ability of ARF3 to control invasion modality is dependent on association and subsequent control of turnover of N-cadherin. In vivo, ARF3 levels acted as a rheostat for metastasis from intraprostatic tumor transplants and ARF3/N-cadherin expression can be used to identify prostate cancer patients with metastatic, poor-outcome disease. Our analysis defines a unique function for the ARF3 GTPase in controlling how cells collectively organize during invasion and metastasis.


Asunto(s)
Factores de Ribosilacion-ADP , Proteínas Activadoras de GTPasa , Proteínas de Unión al GTP Monoméricas , Neoplasias de la Próstata , Humanos , Masculino , Factores de Ribosilacion-ADP/genética , Cadherinas/genética , Endocitosis , Proteínas Activadoras de GTPasa/genética , Neoplasias de la Próstata/genética
6.
Sci Adv ; 9(5): eabq1858, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735782

RESUMEN

The glycocalyx component and sialomucin podocalyxin (PODXL) is required for normal tissue development by promoting apical membranes to form between cells, triggering lumen formation. Elevated PODXL expression is also associated with metastasis and poor clinical outcome in multiple tumor types. How PODXL presents this duality in effect remains unknown. We identify an unexpected function of PODXL as a decoy receptor for galectin-3 (GAL3), whereby the PODXL-GAL3 interaction releases GAL3 repression of integrin-based invasion. Differential cortical targeting of PODXL, regulated by ubiquitination, is the molecular mechanism controlling alternate fates. Both PODXL high and low surface levels occur in parallel subpopulations within cancer cells. Orthotopic intraprostatic xenograft of PODXL-manipulated cells or those with different surface levels of PODXL define that this axis controls metastasis in vivo. Clinically, interplay between PODXL-GAL3 stratifies prostate cancer patients with poor outcome. Our studies define the molecular mechanisms and context in which PODXL promotes invasion and metastasis.


Asunto(s)
Glicocálix , Sialoglicoproteínas , Masculino , Humanos , Glicocálix/metabolismo , Sialoglicoproteínas/metabolismo , Xenoinjertos , Trasplante Heterólogo
7.
Matrix Biol Plus ; 19-20: 100136, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38223308

RESUMEN

High-grade serous (HGS) ovarian cancer is the most lethal gynaecological disease in the world and metastases is a major cause. The omentum is the preferential metastatic site in HGS ovarian cancer patients and in vitro models that recapitulate the original environment of this organ at cellular and molecular level are being developed to study basic mechanisms that underpin this disease. The tumour extracellular matrix (ECM) plays active roles in HGS ovarian cancer pathology and response to therapy. However, most of the current in vitro models use matrices of animal origin and that do not recapitulate the complexity of the tumour ECM in patients. Here, we have developed omentum gel (OmGel), a matrix made from tumour-associated omental tissue of HGS ovarian cancer patients that has unprecedented similarity to the ECM of HGS omental tumours and is simple to prepare. When used in 2D and 3D in vitro assays to assess cancer cell functions relevant to metastatic ovarian cancer, OmGel performs as well as or better than the widely use Matrigel and does not induce additional phenotypic changes to ovarian cancer cells. Surprisingly, OmGel promotes pronounced morphological changes in cancer associated fibroblasts (CAFs). These changes were associated with the upregulation of proteins that define subsets of CAFs in tumour patient samples, highlighting the importance of using clinically and physiologically relevant matrices for in vitro studies. Hence, OmGel provides a step forward to study the biology of HGS omental metastasis. Metastasis in the omentum are also typical of other cancer types, particularly gastric cancer, implying the relevance of OmGel to study the biology of other highly lethal cancers.

8.
Nat Commun ; 13(1): 5317, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085324

RESUMEN

Single cell profiling by genetic, proteomic and imaging methods has expanded the ability to identify programmes regulating distinct cell states. The 3-dimensional (3D) culture of cells or tissue fragments provides a system to study how such states contribute to multicellular morphogenesis. Whether cells plated into 3D cultures give rise to a singular phenotype or whether multiple biologically distinct phenotypes arise in parallel is largely unknown due to a lack of tools to detect such heterogeneity. Here we develop Traject3d (Trajectory identification in 3D), a method for identifying heterogeneous states in 3D culture and how these give rise to distinct phenotypes over time, from label-free multi-day time-lapse imaging. We use this to characterise the temporal landscape of morphological states of cancer cell lines, varying in metastatic potential and drug resistance, and use this information to identify drug combinations that inhibit such heterogeneity. Traject3d is therefore an important companion to other single-cell technologies by facilitating real-time identification via live imaging of how distinct states can lead to alternate phenotypes that occur in parallel in 3D culture.


Asunto(s)
Neoplasias , Proteómica , Diagnóstico por Imagen , Humanos , Neoplasias/diagnóstico por imagen , Fenotipo
9.
EMBO J ; 41(17): e109205, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35880301

RESUMEN

Patient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion. By contrast, cells engaging a reconstituted basement membrane in 2D had high cortical actin tension that forced filamin unfolding and endoplasmic reticulum (ER) associations. Enhanced filamin-ER interactions increased levels of PKR-like ER kinase effectors and ER-plasma membrane contact sites that compromised calcium homeostasis and diminished cell viability. Consequently, cells with decreased cortical actin tension had reduced ER stress and survived better. Consistently, cortical actin tension in cellular spheroids regulated polarized basement membrane membrane deposition and sensitivity to exogenous stress. The findings implicate cortical actin tension-mediated filamin unfolding in ER function and underscore the importance of tissue mechanics in organoid homeostasis.


Asunto(s)
Actinas , Retículo Endoplásmico , Actinas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Filaminas/metabolismo , Fenotipo
10.
Methods Mol Biol ; 2438: 439-454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147956

RESUMEN

The three-dimensional culture of epithelial cells allows the characterization of processes required for collective epithelial polarization, such as formation of an epithelial lumen. Madin-Darby Canine Kidney (MDCK) cells have been instrumental in pioneering 3-Dimensional culture analysis methods. Here we describe methods for MDCK cell three-dimensional culture, generation of stable engineered cell lines, immunolabeling, and imaging approaches that allow for analysis of apical-basal polarity during lumen formation in this model.


Asunto(s)
Polaridad Celular , Células Epiteliales , Animales , Técnicas de Cultivo de Célula , Línea Celular , Perros , Células de Riñón Canino Madin Darby , Morfogénesis
11.
Front Neurol ; 13: 1017087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703629

RESUMEN

Purpose: Epithelioid glioblastoma is an unusual histologic variant of malignant glioma. The present study investigates both the genomic and transcriptomic determinants that may promote the development of this tumor. Methods: Whole-exome sequencing (WES) and whole-transcriptome sequencing (WTS) were performed on an epithelioid glioblastoma, along with a specific bioinformatic pipeline to generate electronic karyotyping and investigate the tumor immune microenvironment. Microdissected sections containing typical glioblastoma features and epithelioid morphology were analyzed separately using the same methodologies. Results: An epithelioid glioblastoma, with immunopositivity for GFAP, Olig-2, and ATRX but negative for IDH-1 and p53, was identified. The tumor cell content from microdissection was estimated to be 85-90% for both histologic tumor components. WES revealed that both glioma and epithelioid sections contained identical point mutations in PTEN, RB1, TERT promoter, and TP53. Electronic karyotype analysis also revealed similar chromosomal copy number alterations, but the epithelioid component showed additional abnormalities that were not found in the glioblastoma component. The tumor immune microenvironments were strikingly different and WTS revealed high levels of transcripts from myeloid cells as well as M1 and M2 macrophages in the glioma section, while transcripts from CD4+ lymphocytes and NK cells predominated in the epithelioid section. Conclusion: Epithelioid glioblastoma may be genomically more unstable and oncogenically more advanced, harboring an increased number of mutations and karyotype abnormalities, compared to typical glioblastomas. The tumor immune microenvironment is also different.

12.
J Math Biol ; 83(5): 60, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739608

RESUMEN

In many phylogenetic applications, such as cancer and virus evolution, time trees, evolutionary histories where speciation events are timed, are inferred. Of particular interest are clock-like trees, where all leaves are sampled at the same time and have equal distance to the root. One popular approach to model clock-like trees is coalescent theory, which is used in various tree inference software packages. Methodologically, phylogenetic inference methods require a tree space over which the inference is performed, and the geometry of this space plays an important role in statistical and computational aspects of tree inference algorithms. It has recently been shown that coalescent tree spaces possess a unique geometry, different from that of classical phylogenetic tree spaces. Here we introduce and study a space of discrete coalescent trees. They assume that time is discrete, which is natural in many computational applications. This tree space is a generalisation of the previously studied ranked nearest neighbour interchange space, and is built upon tree-rearrangement operations. We generalise existing results about ranked trees, including an algorithm for computing distances in polynomial time, and in particular provide new results for both the space of discrete coalescent trees and the space of ranked trees. We establish several geometrical properties of these spaces and show how these properties impact various algorithms used in phylogenetic analyses. Our tree space is a discretisation of a previously introduced time tree space, called t-space, and hence our results can be used to approximate solutions to various open problems in t-space.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Filogenia
13.
Elife ; 102021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096503

RESUMEN

RAS-like (RAL) GTPases function in Wnt signalling-dependent intestinal stem cell proliferation and regeneration. Whether RAL proteins work as canonical RAS effectors in the intestine and the mechanisms of how they contribute to tumourigenesis remain unclear. Here, we show that RAL GTPases are necessary and sufficient to activate EGFR/MAPK signalling in the intestine, via induction of EGFR internalisation. Knocking down Drosophila RalA from intestinal stem and progenitor cells leads to increased levels of plasma membrane-associated EGFR and decreased MAPK pathway activation. Importantly, in addition to influencing stem cell proliferation during damage-induced intestinal regeneration, this role of RAL GTPases impacts on EGFR-dependent tumourigenic growth in the intestine and in human mammary epithelium. However, the effect of oncogenic RAS in the intestine is independent from RAL function. Altogether, our results reveal previously unrecognised cellular and molecular contexts where RAL GTPases become essential mediators of adult tissue homeostasis and malignant transformation.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Receptores ErbB/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Receptores de Péptidos de Invertebrados/metabolismo , Células Madre/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Animales , Animales Modificados Genéticamente , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endocitosis , Receptores ErbB/genética , Femenino , Humanos , Hiperplasia , Mucosa Intestinal/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glándulas Mamarias Humanas/enzimología , Glándulas Mamarias Humanas/patología , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Receptores de Péptidos de Invertebrados/genética , Transducción de Señal , Células Madre/patología , Proteínas de Unión al GTP ral/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-34156350

RESUMEN

SUMMARY: A male patient with a germline mutation in MEN1 presented at the age of 18 with classical features of gigantism. Previously, he had undergone resection of an insulin-secreting pancreatic neuroendocrine tumour (pNET) at the age of 10 years and had subtotal parathyroidectomy due to primary hyperparathyroidism at the age of 15 years. He was found to have significantly elevated serum IGF-1, GH, GHRH and calcitonin levels. Pituitary MRI showed an overall bulky gland with a 3 mm hypoechoic area. Abdominal MRI showed a 27 mm mass in the head of the pancreas and a 6 mm lesion in the tail. Lanreotide-Autogel 120 mg/month reduced GHRH by 45% and IGF-1 by 20%. Following pancreaticoduodenectomy, four NETs were identified with positive GHRH and calcitonin staining and Ki-67 index of 2% in the largest lesion. The pancreas tail lesion was not removed. Post-operatively, GHRH and calcitonin levels were undetectable, IGF-1 levels normalised and GH suppressed normally on glucose challenge. Post-operative fasting glucose and HbA1c levels have remained normal at the last check-up. While adolescent-onset cases of GHRH-secreting pNETs have been described, to the best of our knowledge, this is the first reported case of ectopic GHRH in a paediatric setting leading to gigantism in a patient with MEN1. Our case highlights the importance of distinguishing between pituitary and ectopic causes of gigantism, especially in the setting of MEN1, where paediatric somatotroph adenomas causing gigantism are extremely rare. LEARNING POINTS: It is important to diagnose gigantism and its underlying cause (pituitary vs ectopic) early in order to prevent further growth and avoid unnecessary pituitary surgery. The most common primary tumour sites in ectopic acromegaly include the lung (53%) and the pancreas (34%) (1): 76% of patients with a pNET secreting GHRH showed a MEN1 mutation (1). Plasma GHRH testing is readily available in international laboratories and can be a useful diagnostic tool in distinguishing between pituitary acromegaly mediated by GH and ectopic acromegaly mediated by GHRH. Positive GHRH immunostaining in the NET tissue confirms the diagnosis. Distinguishing between pituitary (somatotroph) hyperplasia secondary to ectopic GHRH and pituitary adenoma is difficult and requires specialist neuroradiology input and consideration, especially in the MEN1 setting. It is important to note that the vast majority of GHRH-secreting tumours (lung, pancreas, phaeochromocytoma) are expected to be visible on cross-sectional imaging (median diameter 55 mm) (1). Therefore, we suggest that a chest X-ray and an abdominal ultrasound checking the adrenal glands and the pancreas should be included in the routine work-up of newly diagnosed acromegaly patients.

15.
Nat Commun ; 12(1): 1623, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712589

RESUMEN

The signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Metástasis de la Neoplasia , Fosfatidilinositoles/metabolismo , Transducción de Señal , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/genética , Xenoinjertos , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
J Perinat Med ; 49(3): 275-298, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33544519

RESUMEN

OBJECTIVES: Clinical chorioamnionitis at term is considered the most common infection-related diagnosis in labor and delivery units worldwide. The syndrome affects 5-12% of all term pregnancies and is a leading cause of maternal morbidity and mortality as well as neonatal death and sepsis. The objectives of this study were to determine the (1) amniotic fluid microbiology using cultivation and molecular microbiologic techniques; (2) diagnostic accuracy of the clinical criteria used to identify patients with intra-amniotic infection; (3) relationship between acute inflammatory lesions of the placenta (maternal and fetal inflammatory responses) and amniotic fluid microbiology and inflammatory markers; and (4) frequency of neonatal bacteremia. METHODS: This retrospective cross-sectional study included 43 women with the diagnosis of clinical chorioamnionitis at term. The presence of microorganisms in the amniotic cavity was determined through the analysis of amniotic fluid samples by cultivation for aerobes, anaerobes, and genital mycoplasmas. A broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry was also used to detect bacteria, select viruses, and fungi. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin-6 (IL-6) concentration ≥2.6 ng/mL. RESULTS: (1) Intra-amniotic infection (defined as the combination of microorganisms detected in amniotic fluid and an elevated IL-6 concentration) was present in 63% (27/43) of cases; (2) the most common microorganisms found in the amniotic fluid samples were Ureaplasma species, followed by Gardnerella vaginalis; (3) sterile intra-amniotic inflammation (elevated IL-6 in amniotic fluid but without detectable microorganisms) was present in 5% (2/43) of cases; (4) 26% of patients with the diagnosis of clinical chorioamnionitis had no evidence of intra-amniotic infection or intra-amniotic inflammation; (5) intra-amniotic infection was more common when the membranes were ruptured than when they were intact (78% [21/27] vs. 38% [6/16]; p=0.01); (6) the traditional criteria for the diagnosis of clinical chorioamnionitis had poor diagnostic performance in identifying proven intra-amniotic infection (overall accuracy, 40-58%); (7) neonatal bacteremia was diagnosed in 4.9% (2/41) of cases; and (8) a fetal inflammatory response defined as the presence of severe acute funisitis was observed in 33% (9/27) of cases. CONCLUSIONS: Clinical chorioamnionitis at term, a syndrome that can result from intra-amniotic infection, was diagnosed in approximately 63% of cases and sterile intra-amniotic inflammation in 5% of cases. However, a substantial number of patients had no evidence of intra-amniotic infection or intra-amniotic inflammation. Evidence of the fetal inflammatory response syndrome was frequently present, but microorganisms were detected in only 4.9% of cases based on cultures of aerobic and anaerobic bacteria in neonatal blood.


Asunto(s)
Líquido Amniótico , Bacteriemia , Corioamnionitis , Gardnerella vaginalis/aislamiento & purificación , Interleucina-6/análisis , Ureaplasma/aislamiento & purificación , Adulto , Líquido Amniótico/inmunología , Líquido Amniótico/microbiología , Bacteriemia/diagnóstico , Bacteriemia/etiología , Bacteriemia/microbiología , Bacteriemia/prevención & control , Biomarcadores/análisis , Corioamnionitis/diagnóstico , Corioamnionitis/epidemiología , Corioamnionitis/inmunología , Corioamnionitis/microbiología , Estudios Transversales , Femenino , Enfermedades Fetales/sangre , Enfermedades Fetales/diagnóstico , Humanos , Recién Nacido , Sepsis Neonatal/etiología , Sepsis Neonatal/prevención & control , Placenta/inmunología , Placenta/patología , Embarazo , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico
17.
Mol Oncol ; 14(8): 1868-1880, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32484599

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis and high rates of relapse. The lack of actionable targets for TNBC has contributed to the high mortality rates of this disease, and new candidate molecules for potential manipulation are urgently required. Here, we show that macrophage-stimulating protein (MSP) and its tyrosine kinase receptor, Recepteur d'origine nantais (RON), are potent drivers of cancer cell growth and tumor progression in a mouse model of TNBC driven by the loss of Trp53 and Brca1. After comparison of two genetically engineered mouse models of TNBC, we found that mammary tumors from K14-Cre;Brca1F/F ;Trp53F/F (KB1P) mice exhibit high endogenous levels of MSP and RON expression. We show that MSP stimulates serine/threonine kinase 1 and extracellular regulated MAPK activation as well as cancer cell growth in cell lines derived from the two mouse models, while genetic and pharmacological inhibition of RON prevents these effects. Similarly, KB1P tumor progression in mice was robustly attenuated by treatment with a RON inhibitor with accompanied reduction in the proliferation marker, Ki-67. Analysis of human gene expression data confirmed that the genes encoding MSP and RON are robustly expressed in human TNBC as well as other subsets of breast cancer. Our findings uncover a mouse model where MSP expression and RON expression are naturally increased, and they provide evidence that this receptor and its ligand are viable candidate molecules for targeted treatment of breast cancer.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
18.
Sci Signal ; 12(567)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723174

RESUMEN

Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry-based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Hipoxia , Neovascularización Patológica/genética , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética
19.
Gynecol Obstet Invest ; 84(2): 204-208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30408804

RESUMEN

BACKGROUND: We discuss the ethical decision points in a case report that describes a novel COL1A1 mutation associated to Osteogenesis Imperfecta type II, but with a non-lethal outcome. CASE: A 33-year-old female underwent a 21-week ultrasound that revealed short bowed femurs and humeri with old fractures and bowed tibias and fibulas. Amniotic fluid testing revealed a novel COL1A1 mutation (c.1840G>A; p.Gly614Arg). OI Type II diagnosis was made. A previously reported mutation of the same gene but different locus (c.1840G>C; p.Gly614Arg) led to a lethal form of OI type II. The newborn was delivered via a cesarean delivery and intravenous bisphosphonates (Zaledronic acid) was administered every 3 months. Currently the infant is 22 months old, is growing, with mild bilateral conductive hearing loss. CONCLUSION: The unexpected clinical outcome should serve as a reminder that phenotypic variability can occur with genetic mutations. Our case shows that the diagnosis of the type of OI should be based not only on clinical findings and genetic investigations but also on the clinical course over time.


Asunto(s)
Mutación , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Adulto , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Femenino , Humanos , Lactante , Recién Nacido , Osteogénesis Imperfecta/tratamiento farmacológico , Embarazo , Resultado del Embarazo , Ultrasonografía Prenatal , Ácido Zoledrónico/uso terapéutico
20.
Cell Death Dis ; 9(11): 1069, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341281

RESUMEN

Based on a molecular classification of prostate cancer using gene expression pathway signatures, we derived a set of 48 genes in critical pathways that significantly predicts clinical outcome in all tested patient cohorts. We tested these genes in a functional genomics screen in a panel of three prostate cancer cell lines (LNCaP, PC3, DU145), using RNA interference. The screen revealed several genes whose knockdown caused strong growth inhibition in all cell lines. Additionally, we tested the gene set in the presence of docetaxel to see whether any gene exhibited additive or synergistic effects with the drug. We observed a strong synergistic effect between DLGAP5 knockdown and docetaxel in the androgen-sensitive line LNCaP, but not in the two other androgen-independent lines. We then tested whether this effect was connected to androgen pathways and found that knockdown of the androgen receptor by si-RNA attenuated the synergy significantly. Similarly, androgen desensitized LNCaP-AI cells had a higher IC50 to docetaxel and did not exhibit the synergistic interaction. Short-term exposure to enzalutamide did not significantly alter the behaviour of parental LNCaP cells. An immunofluorescence analysis in LNCaP cells suggests that under the double insult of DLGAP5 knockdown and docetaxel, cells predominantly arrest in metaphase. In contrast, the knockdown of the androgen receptor by siRNA appears to assist cells to progress through metaphase in to anaphase, even in the presence of docetaxel. Our data suggest that DLGAP5 has a unique function in stabilizing spindle formation and surviving microtubule assault from docetaxel, in an androgen-regulated cell cycle system.


Asunto(s)
Docetaxel/farmacología , Genómica/métodos , Proteínas de Neoplasias/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Benzamidas , Proteínas Cdc20/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Metafase , Proteínas Asociadas a Microtúbulos/genética , Nitrilos , Células PC-3 , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Receptores Androgénicos/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA