Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35037846

RESUMEN

A novel Streptomyces strain, SUN51T, was isolated from soils sampled in Wisconsin, USA, as part of a Streptomyces biogeography survey. Genome sequencing revealed that this strain had less than 90 % average nucleotide identity (ANI) to type species of Streptomyces: SUN51T was most closely related to Streptomyces dioscori A217T (99.5 % 16S rRNA gene identity, 89.4 % ANI). Genome size was estimated at 8.81 Mb, and the genome DNA G+C content was 72 mol%. The strain possessed the cellular fatty acids anteiso-C15 : 0, iso-C16 : 0, 16 : 1 ω7c, anteiso-C17 : 0, iso-C14 : 0 and C16 : 0. The predominant menaquinones were MK-9 H4, MK-9 H6 and MK-9 H8. Strain SUN51T contained the polar lipids phosphatidic acid, phosphatidyl ethanolamine, phosphatidyl glycerol and diphosphatidyl glycerol. The cell wall contained ll-diaminopimelic acid. The strain could grow on a broad range of carbon sources and tolerate temperatures of up to 40 °C. The results of the polyphasic study confirmed that this isolate represents a novel species of the genus Streptomyces, for which the name Streptomyces apricus sp. nov. is proposed. The type strain of this species is SUN51T (=NRRL B-65543T=JCM 33736T).


Asunto(s)
Filogenia , Microbiología del Suelo , Streptomyces , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Wisconsin
2.
Environ Microbiol ; 24(1): 1-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34929753

RESUMEN

Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.


Asunto(s)
Burkholderiaceae , Suelo , Bacterias/genética , Bosques , Fenotipo
3.
Int J Syst Evol Microbiol ; 70(9): 5093-5105, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32809929

RESUMEN

Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.


Asunto(s)
Burkholderiaceae/clasificación , Bosques , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Burkholderiaceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hidroxibenzoatos , New York , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
4.
Int J Syst Evol Microbiol ; 70(3): 2137-2146, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32027304

RESUMEN

RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3-4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr-1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11T was Q-8, and the major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain is RP11T (=DSM 110123T=LMG 31517T).


Asunto(s)
Burkholderiaceae/clasificación , Bosques , Hidroxibenzoatos/metabolismo , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Burkholderiaceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , New York , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
5.
mBio ; 10(1)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30782658

RESUMEN

Selective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals of Aspergillus flavus are largely unknown. As soils are widely considered the natural habitat of A. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we used A. flavus DNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth of A. flavus Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCE Aflatoxin, produced by the fungus Aspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains of A. flavus produce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage to A. flavus in producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


Asunto(s)
Aflatoxinas/metabolismo , Antibiosis , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Metabolismo Energético , Venenos/metabolismo , Microbiología del Suelo , Bacterias/crecimiento & desarrollo , ADN de Hongos/análisis , ADN de Hongos/genética , Aptitud Genética , Genética de Población , Reacción en Cadena en Tiempo Real de la Polimerasa , Temperatura
6.
J Environ Manage ; 128: 1050-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23933218

RESUMEN

Roadside ditches are ubiquitous, yet their role in water pollution conveyance has largely been ignored, especially for bacteria and sediment. The goal of this study was to determine if roadside ditches are conduits for fecal indicator organisms and sediment, and if land use, specifically manure amendment, affects the concentrations and loadings. Seven roadside ditches in central New York, adjacent to either manure amended fields or predominately forested land, were monitored for one year for Escherichia coli (E. coli), total suspended solids (TSS) and flow. E. coli concentrations in water samples following storms averaged 4616 MPN of E. coli/100 mL. Concentrations reached as high as >241,960 MPN of E. coli/100 mL and frequently exceeded New York State and US EPA recommendations. Concentrations peaked in both summers following manure spreading, with declining levels thereafter. However, viable organisms were detected throughout the year. The concentrations were also high in the forested sites, with possible sources including wildlife, pets, septic wastes and livestock. E. coli concentrations and loadings were related to TSS concentrations and loadings, whether manure had been spread in the last 30 days and for concentrations only, antecedent rainfall. Viable E. coli were also present in ditch sediment between storm events and were available for resuspension and transport. Total suspended solids concentrations averaged 0.51 g/L and reached as high as 52.2 g/L. Loads were similarly high, at an average of 631.6 kg/day. Both concentrations and loads tended to be associated with discharge and rainfall parameters. The cumulative pollutant contribution from the ditch network was estimated to be large enough to produce detectable and sometimes high concentrations in a receiving stream in a small, rural watershed. Roadside drainage networks need to be actively managed for water quality improvements, because they capture and rapidly shunt stormwater and associated contaminants to streams.


Asunto(s)
Heces/microbiología , Sedimentos Geológicos/microbiología , Calidad del Agua , Animales , Escherichia coli/aislamiento & purificación , Ganado , Estiércol , New York , Mascotas , Lluvia , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA