Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
2.
Am J Clin Pathol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597584

RESUMEN

OBJECTIVES: Myeloproliferative neoplasm, unclassifiable (MPN-U, revised to MPN, not otherwise specified in the fifth edition of the World Health Organization classification) is a heterogeneous category of primary marrow disorders with clinical, morphologic, and/or molecular features that preclude classification as a more specific MPN subtype due to stage at diagnosis, overlapping features between MPN subtypes, or the presence of coexisting disorders. Compared with other MPN subtypes, the contribution of the mutational landscape in MPN-U in conjunction with other clinical and morphologic biomarkers to prognosis has been less well investigated. METHODS: We performed a multicenter, retrospective study of MPN-U (94 cases) to better define the clinicopathologic features, genetic landscape, and clinical outcomes, including subgroups of early-stage, advanced-stage, and coexisting disorders. The Dynamic International Prognostic Scoring System (DIPSS) plus scoring system was applied to assess its relevance to MPN-U prognosis. RESULTS: Multivariate analysis demonstrated bone marrow blast count and DIPSS plus score as statistically significant in predicting overall survival. Univariate analysis identified additional potential poor prognostic markers, including abnormal karyotype and absence of JAK2 mutation. Secondary mutations were frequent in the subset analyzed by next-generation sequencing (26/37 cases, 70.3%) with a borderline association between high molecular risk mutations and overall survival. CONCLUSIONS: This study, as one of the largest of MPN-U studies incorporating both clinicopathologic and molecular data, moves toward identification of biomarkers that better predict prognosis in this heterogeneous category.

3.
Am J Surg Pathol ; 48(6): e43-e64, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451836

RESUMEN

Breast implant-associated anaplastic large cell lymphoma has been recognized as a distinct entity in the World Health Organization classification of hematolymphoid neoplasms. These neoplasms are causally related to textured implants that were used worldwide until recently. Consequently, there is an increased demand for processing periprosthetic capsules, adding new challenges for surgeons, clinicians, and pathologists. In the literature, the focus has been on breast implant-associated anaplastic large cell lymphoma; however, benign complications related to the placement of breast implants occur in up to 20% to 30% of patients. Imaging studies are helpful in assessing patients with breast implants for evidence of implant rupture, changes in tissues surrounding the implants, or regional lymphadenopathy related to breast implants, but pathologic examination is often required. In this review, we couple our experience with a review of the literature to describe a range of benign lesions associated with breast implants that can be associated with different clinical presentations or pathogenesis and that may require different diagnostic approaches. We illustrate the spectrum of the most common of these benign disorders, highlighting their clinical, imaging, gross, and microscopic features. Finally, we propose a systematic approach for the diagnosis and handling of breast implant specimens in general.


Asunto(s)
Implantación de Mama , Implantes de Mama , Linfoma Anaplásico de Células Grandes , Humanos , Implantes de Mama/efectos adversos , Femenino , Linfoma Anaplásico de Células Grandes/patología , Linfoma Anaplásico de Células Grandes/etiología , Implantación de Mama/efectos adversos , Implantación de Mama/instrumentación , Valor Predictivo de las Pruebas , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Relevancia Clínica
5.
Nat Commun ; 15(1): 1203, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331987

RESUMEN

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , ADN Helicasas/metabolismo , Reprogramación Metabólica , Reparación del ADN , Daño del ADN
7.
Mod Pathol ; 36(12): 100349, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820764

RESUMEN

A small subset of high-grade B-cell lymphoma (HGBL) with blastoid morphology remains poorly understood. We assessed 55 cases of blastoid HGBL, not otherwise specified (NOS) and compared their clinicopathologic characteristics with those of 81 non-blastoid HGBL-NOS and 62 blastoid HGBL with MYC and BCL2, with or without BCL6 rearrangements (double/triple-hit lymphoma [D/THL]). Patients with blastoid HGBL-NOS showed similar clinicopathologic features to patients with blastoid D/THLs and non-blastoid HGBL-NOS, except more frequently with a history of low-grade B-cell lymphoma, bone marrow involvement, and BCL2 rearrangement (P < .05) compared to the latter. MYC rearrangement (MYC-R), detected in 40% of blastoid HGBL-NOS, was associated with aggressive clinicopathologic features and poorer overall survival, even worse than that of blastoid D/THL (P < .05). Transcriptome profiling revealed a distinct gene expression pattern with differentially expressed genes enriched in MYC and P53-targeted genes in MYC-R blastoid HGBL-NOS. Fifty-two percent of blastoid HGBL-NOS had a double hit-like signature, similar to non-blastoid HGBL-NOS (P = .73). The overall survival of the blastoid HGBL-NOS group was similar to that of the blastoid D/THL group but appeared poorer than that of its non-blastoid counterparts (P = .07). Taken together, blastoid HGBL-NOS is an aggressive B-cell lymphoma that shares overlapping clinicopathologic and genetic features with non-blastoid HGBL-NOS. MYC-R in patients with blastoid HGBL-NOS identifies a highly aggressive subgroup with distinct aggressive clinicopathologic features, unique molecular signatures, and a dismal clinical outcome.


Asunto(s)
Linfoma de Células B , Linfoma de Células B Grandes Difuso , Humanos , Reordenamiento Génico , Linfoma de Células B/patología , Proteínas Proto-Oncogénicas c-myc/genética , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-bcl-6/genética
8.
Br J Haematol ; 203(4): 581-592, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37608562

RESUMEN

Chronic myelomonocytic leukaemia (CMML) is a haematological disorder with high risk of transformation to acute myeloid leukaemia (AML). To characterize the phenotypic and genomic patterns of CMML progression, we evaluated a cohort of 189 patients with AML evolving from CMML. We found that transformation occurs through distinct trajectories characterized by genomic profiles and clonal evolution: monocytic (Mo-AML, 53%), immature myeloid (My-AML, 43%) or erythroid (Ery-AML, 2%). Mo-AML, characterized by expansion of monoblasts and promonocytes (low CD34, CD117 expression; high CD14, CD33, CD56 and CD64 expression), were defined by SRSF2, TET2 and RAS pathway mutation co-dominance and were more likely to evolve from SRSF2-TET2 co-mutant CMML through emergence/expansion of RAS pathway mutant clones. Conversely, My-AML, characterized by expansion of immature myeloid blasts (high frequency of CD34, CD38, CD117; low frequency of CD14, CD64 and CD56 expression) were less likely to exhibit SRSF2-TET2 co-mutations or RAS pathway mutations and had higher frequency of CEBPA mutations. Ery-AML was defined by complex karyotypes and TP53 mutations. A trend towards improved OS and EFS with hypomethylating agent-venetoclax combination was observed in My-AML, but not Mo-AML. These findings define distinct progression of CMML and set the basis for future studies evaluating the role of phenotype-specific therapeutics.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Mielomonocítica Crónica , Humanos , Leucemia Mielomonocítica Crónica/genética , Mutación , Leucemia Mieloide Aguda/genética , Fenotipo
9.
EJHaem ; 4(3): 837-840, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37601865

RESUMEN

Acute leukemia with KMT2A rearrangement shows a spectrum of immunophenotypic presentation, but blastic plasmacytoid dendritic cell differentiation is extremely rare. Here we present a case of KMT2A rearranged acute leukemia with a hybrid immunophenotype in which a single blast population showed both blastic plasmacytoid dendritic cell and monocytic differentiation. This unusual case contributes to the diversity of the immunophenotypic spectrum in KMT2A rearranged acute leukemia and also sheds light on the cell of origin of plasmacytoid dendritic cells.

12.
Am J Clin Pathol ; 160(4): 365-393, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37391178

RESUMEN

OBJECTIVES: The practicing pathologist is challenged by the ever-increasing diagnostic complexity of myeloid neoplasms. This guide is intended to provide a general roadmap from initial case detection, often triggered by complete blood count results with subsequent blood smear review, to final diagnosis. METHODS: The integration of hematologic, morphologic, immunophenotypic, and genetic features into routine practice is standard of care. The requirement for molecular genetic testing has increased along with the complexity of test types, the utility of different testing modalities in identifying key gene mutations, and the sensitivity and turnaround time for various assays. RESULTS: Classification systems for myeloid neoplasms have evolved to achieve the goal of providing a pathology diagnosis that enhances patient care, outcome prediction, and treatment options for individual patients and is formulated, endorsed, and adopted by hematologists/oncologists. CONCLUSIONS: This guide provides diagnostic strategies for all myeloid neoplasm subtypes. Special considerations are provided for each category of testing and neoplasm category, along with classification information, genetic testing requirements, interpretation information, and case reporting recommendations based on the experience of 11 Bone Marrow Pathology Group members.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Médula Ósea/patología , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Neoplasias/patología , Pronóstico , Mutación
15.
bioRxiv ; 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36865225

RESUMEN

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

16.
Leuk Lymphoma ; 64(5): 972-980, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36960680

RESUMEN

Myeloid sarcoma (MS) is currently considered equivalent to de novo acute myeloid leukemia (AML); however, the relationship between these entities is poorly understood. This retrospective multi-institutional cohort study compared 43 MS with NPM1 mutation to 106 AML with NPM1 mutation. Compared to AML, MS had more frequent cytogenetic abnormalities including complex karyotype (p = .009 and p = .007, respectively) and was enriched in mutations of genes involved in histone modification, including ASXL1 (p = .007 and p = .008, respectively). AML harbored a higher average number of gene mutations (p = .002) including more frequent PTPN11 mutations (p < .001) and mutations of DNA-methylating genes including DNMT3A and IDH1 (both p < .001). MS had significantly shorter overall survival (OS) than AML (median OS: 44.9 vs. 93.2 months, respectively, p = .037). MS with NPM1 mutation has a unique genetic landscape, and poorer OS, compared to AML with NPM1 mutation.


First study comparing genetic profiles of MS and AML with a common disease-defining lesion.NPM1Mut MS may be genetically distinct from NPM1Mut AML.NPM1Mut MS may have inferior overall survival compared to NPM1Mut AML.


Asunto(s)
Leucemia Mieloide Aguda , Sarcoma Mieloide , Humanos , Médula Ósea/patología , Proteínas Nucleares/genética , Nucleofosmina , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/genética , Sarcoma Mieloide/patología , Estudios Retrospectivos , Estudios de Cohortes , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Pronóstico
17.
Mod Pathol ; 36(3): 100016, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36788093

RESUMEN

Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm driven by canonical gene mutations in JAK2, CALR, or MPL in >80% of the cases. PMF that lacks these canonical alterations is termed triple-negative PMF (TN-PMF). The pathologic and genetic characteristics of TN-PMF compared with those of conventional PMF with canonical driver mutations (DM-PMF) have not been well studied. We aimed to identify clinicopathologic and molecular genetic differences between patients with TN-PMF (n = 56) and DM-PMF (n = 89), all of whom fulfilled the 2016 World Health Organization diagnostic criteria for PMF. Compared with the control group, patients in the TN-PMF group were more likely to have thrombocytopenia and less likely to have organomegaly. The bone marrow in patients with TN-PMF showed fewer granulocytic elements and more frequent dyserythropoiesis. Cytogenetic analysis showed a higher incidence of trisomy 8. Targeted next-generation sequencing revealed a lower frequency of ASXL1 mutations but enrichment of ASXL1/SRSF2 comutations. Our findings demonstrated several clinicopathologic and molecular differences between TN-PMF and DM-PMF. These findings, particularly the observed mutation profile characterized by a higher frequency of ASXL1 and SRSF2 comutation, suggest that at least a subset of TN-PMF may be pathogenetically different from DM-PMF, with potential prognostic implications.


Asunto(s)
Trastornos Mieloproliferativos , Mielofibrosis Primaria , Humanos , Médula Ósea/patología , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/patología , Trastornos Mieloproliferativos/genética , Mutación , Pronóstico , Janus Quinasa 2/genética , Factores de Transcripción/genética
18.
Leuk Res ; 127: 107033, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774789

RESUMEN

The presence of JAK2 exon 12 mutation was included by the 2016 World Health Organization (WHO) Classification as one of the major criteria for diagnosing polycythemia vera (PV). Few studies have evaluated the clinical presentation and bone marrow morphology of these patients and it is unclear if these patients fulfill the newly published criteria of 5th edition WHO or The International Consensus Classification (ICC) criteria for PV. Forty-three patients with JAK2 exon 12 mutations were identified from the files of 7 large academic institutions. Twenty patients had complete CBC and BM data at disease onset. Fourteen patients met the diagnostic criteria for PV and the remaining six patients were diagnosed as MPN-U. At diagnosis, 9/14 patients had normal WBC and platelet counts (isolated erythrocytosis/IE subset); while 5/14 had elevated WBC and/or platelets (polycythemic /P subset). We found that hemoglobin and hematocrit tended to be lower in the polycythemia group. Regardless of presentation (P vs IE), JAK2 deletion commonly occurred in amino acids 541-544 (62 %). MPN-U patients carried JAK2 exon 12 mutation, but did not fulfill the criteria for PV. Half of the patients had hemoglobin/hematocrit below the diagnostic threshold for PV, but showed increased red blood cell count with low mean corpuscular volume (56-60 fL). Three cases lacked evidence of bone marrow hypercellularity. In summary, the future diagnostic criteria for PV may require a modification to account for the variant CBC and BM findings in some patients with JAK2 exon 12 mutation.


Asunto(s)
Trastornos Mieloproliferativos , Policitemia Vera , Policitemia , Humanos , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Policitemia Vera/diagnóstico , Policitemia Vera/genética , Policitemia Vera/patología , Médula Ósea/patología , Policitemia/patología , Janus Quinasa 2/genética , Mutación , Exones/genética
19.
JCO Precis Oncol ; 7: e2200400, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36689697

RESUMEN

PURPOSE: Therapy-related acute myeloid leukemias (t-AML) are a heterogenous group of aggressive neoplasms that arise following exposure to cytotoxic chemotherapy and/or ionizing radiation. Many therapy-related myeloid neoplasms (t-MN) are associated with distinct chromosomal aberrations and/or TP53 alterations, but little is known about the clinicopathologic and molecular features of normal karyotype t-AML (NK-t-AML) and whether this t-MN subtype is distinctly different from NK de novo AML (NK-dn-AML). METHODS: This multi-institutional study by the Bone Marrow Pathology Group retrospectively evaluated clinicopathologic and molecular characteristics of 335 patients with NK-AML, comprising 105 t-AML and 230 dn-AML cases. RESULTS: Patients with t-AML compared with dn-AML exhibit significantly shorter overall survival (OS; median months: 17.6 v 44.2; P < .0001) and relapse-free survival (RFS; median months: 9.1 v 19.2; P = .0018). Frequency of NPM1, FLT3, KRAS, and GATA2 mutations were significantly different in NK-t-AML compared with NK-dn-AML (NPM1 35% v 49%; P = .0493; FLT3 23% v 36%; P = 0494; KRAS 12% v 5%; P = .0465; GATA2 9% v 2% P = .0105), while TP53 mutations were rare. Patients with t-AML more often stratified into intermediate or adverse 2017 ELN genetic risk groups. Favorable ELN risk predicted favorable OS (hazard ratio [HR], 0.4056; 95% CI, 0 to 0.866; P = .020) and RFS (HR, 0.355; 95% CI, 0 to 0.746; P = .006). Among all patients with NK-AML, stem-cell transplant and favorable ELN risk both significantly affected RFS, while therapy-relatedness and age had a borderline significant impact on OS (HR, 1.355; 95% CI, 0.975 to 1.882; P = .070). CONCLUSION: To our knowledge, this is the largest study to date to comprehensively evaluate NK-t-AML and provides a framework that may inform our understanding of NK-t-AML disease biology and could potentially help guide therapeutic management and improved disease classification in t-MNs that lack cytogenetic aberrations.


Asunto(s)
Médula Ósea , Leucemia Mieloide Aguda , Humanos , Médula Ósea/patología , Proteínas Nucleares/genética , Nucleofosmina , Pronóstico , Estudios Retrospectivos , Proteínas Proto-Oncogénicas p21(ras)/genética , Leucemia Mieloide Aguda/genética , Aberraciones Cromosómicas , Cariotipo
20.
Virchows Arch ; 482(1): 69-83, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36469102

RESUMEN

The myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) category includes a heterogeneous group of diseases characterized by the co-occurrence of clinical and pathologic features of both myelodysplastic and myeloproliferative neoplasms. The recently published International Consensus Classification of myeloid neoplasms revised the entities included in the MDS/MPN category as well as criteria for their diagnosis. In addition to the presence of one or more increased peripheral blood cell counts as evidence of myeloproliferative features, concomitant cytopenia as evidence of ineffective hematopoiesis is now an explicit requirement to diagnose the diseases included in this category. The increasing availability of modern gene sequencing has allowed better understanding of the biologic characteristics of these myeloid neoplasms. The presence of specific mutations in the appropriate clinicopathologic context is now included in the diagnostic criteria for some of MDS/MPN entities. In this review, we highlight what has changed in the diagnostic criteria of MDS/MPN from the WHO 2016 classification while providing practical guidance in diagnosing these diseases.


Asunto(s)
Enfermedades Mielodisplásicas-Mieloproliferativas , Trastornos Mieloproliferativos , Neoplasias , Humanos , Enfermedades Mielodisplásicas-Mieloproliferativas/diagnóstico , Enfermedades Mielodisplásicas-Mieloproliferativas/genética , Trastornos Mieloproliferativos/diagnóstico , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA