Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Mol Med ; 25(22): 10747-10760, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34708529

RESUMEN

The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow-derived MSCs for up to 72 h at room temperature (18°C-22°C), whereas adipose-derived and umbilical cord-derived MSCs showed the highest viability for 72 h at a cold temperature (4°C-8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor-A (VEGF-A), as well as multiple cytokines (eg IL-4, IL-6, IL-8, MPC-1 and TNF-α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources.


Asunto(s)
Criopreservación , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Biomarcadores , Células de la Médula Ósea/citología , Criopreservación/métodos , Citocinas/metabolismo , Metabolismo Energético , Femenino , Humanos , Masculino , Cordón Umbilical/citología
2.
Stem Cells Transl Med ; 10(9): 1266-1278, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34080789

RESUMEN

Human bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) represent promising stem cell therapy for the treatment of type 2 diabetes mellitus (T2DM), but the results of autologous BM-MSC administration in T2DM patients are contradictory. The purpose of this study was to test the hypothesis that autologous BM-MSC administration in T2DM patient is safe and that the efficacy of the treatment is dependant on the quality of the autologous BM-MSC population and administration routes. T2DM patients were enrolled, randomly assigned (1:1) by a computer-based system into the intravenous and dorsal pancreatic arterial groups. The safety was assessed in all the treated patients, and the efficacy was evaluated based on the absolute changes in the hemoglobin A1c, fasting blood glucose, and C-peptide levels throughout the 12-month follow-up. Our data indicated that autologous BM-MSC administration was well tolerated in 30 T2DM patients. Short-term therapeutic effects were observed in patients with T2DM duration of <10 years and a body mass index <23, which is in line with the phenotypic analysis of the autologous BM-MSC population. T2DM duration directly altered the proliferation rate of BM-MSCs, abrogated the glycolysis and mitochondria respiration of BM-MSCs, and induced the accumulation of mitochondria DNA mutation. Our data suggest that autologous administration of BM-MSCs in the treatment of T2DM should be performed in patients with T2DM duration <10 years and no obesity. Prior to further confirming the effects of T2DM on BM-MSC biology, future work with a larger cohort focusing on patients with different T2DM history is needed to understand the mechanism underlying our observation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Médula Ósea , Células de la Médula Ósea , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Obesidad/metabolismo
3.
BMC Pediatr ; 17(1): 104, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28403842

RESUMEN

BACKGROUND: Stem cell therapy has emerged as a promising method for improving motor function of patients with cerebral palsy. The aim of this study is to assess the safety and effectiveness of autologous bone marrow mononuclear stem cell transplantation in patients with cerebral palsy related to oxygen deprivation. METHODS: An open label uncontrolled clinical trial was carried out at Vinmec International Hospital. The intervention consisted of two administrations of stem cells, the first at baseline and the second 3 months later. Improvement was monitored at 3 months and 6 months after the first administration of stem cells, using the Gross Motor Function Measure (GMFM) and Modified Ashworth Score which measures muscle tone. RESULTS: No severe complications were recorded during the study. After transplantation, 12 patients encountered fever without infections and 9 patients experienced vomiting which was easily managed with medications. Gross motor function was markedly improved 3 months or 6 months after stem cell transplantation than at baseline. The post-transplantation GMFM-88 total score, each of its domains and the GMFM-66 percentile were all significantly higher (p-value < 0.001). Muscle spasticity also reduced significantly after transplantation (p-value < 0.001). The therapy was equally effective regardless of sex, age and GMFCS level (p-value > 0.05). CONCLUSION: Autologous bone marrow mononuclear cell transplantation appears to be a safe and effective therapy for patients with cerebral palsy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02569775 . Retrospectively registered on October 15, 2015.


Asunto(s)
Trasplante de Médula Ósea/métodos , Parálisis Cerebral/cirugía , Trasplante de Células Madre Hematopoyéticas/métodos , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Trasplante Autólogo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA