Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Drug Deliv ; 29(1): 2579-2591, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35915055

RESUMEN

Benign prostatic hyperplasia (BPH) is a nonmalignant growth of the prostate tissue and causes urinary tract symptoms. To provide effective treatment, tamsulosin (TM), saw palmetto oil (SP), and pumpkin seed oil (PSO) were combined and fabricated a nanostructured lipid carrier (NLC) as TM-S/P-NLC using experimental design. The purpose was to enhance the permeation and therapeutic activity of TM; combining TM with SP and PSO in an NLC generates a synergistic activity. An optimized TM-S/P-NLC was obtained after statistical analysis, and it had a particle size, percentage of entrapment efficiency, and steady-state flux of 102 nm, 65%, and 4.5 µg/cm2.min, respectively. Additionally, the optimized TM-S/P-NLC had spherical particles with a more or less uniform size and a stability score of 95%, indicating a high level of stability. The in vitro release studies exhibited the optimized TM-S/P-NLC had the maximum release profile for TM (81 ± 4%) as compared to the TM-NLCs prepared without the addition of S/P oil (59 ± 3%) or the TM aqueous suspension (30 ± 5%). The plasma TM concentration-time profile for the TM-S/P-NLC and the marketed TM tablets indicated that when TM was supplied in a TM-S/P-NLC, the pharmacokinetic profile of the drug was improved. Simultaneously, in vivo therapeutic efficacy studies also showed favorable results for the TM-S/P-NLC in terms of the prostate weight and prostate index following treatment of BPH. Based on the findings of present study, we suggest that in the future, the TM-S/P-NLC could be a novel drug delivery system for treating BPH.


Asunto(s)
Cucurbita , Nanoestructuras , Hiperplasia Prostática , Portadores de Fármacos/farmacocinética , Excipientes , Humanos , Lípidos , Masculino , Tamaño de la Partícula , Extractos Vegetales , Aceites de Plantas , Hiperplasia Prostática/tratamiento farmacológico , Serenoa , Tamsulosina/uso terapéutico
2.
Gels ; 8(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35323289

RESUMEN

Tongue cancer is one of the most common carcinomas of the head and neck region. The antitumor activities of statins, including lovastatin (LV), and the essential oil of eucalyptus (Eu oil), have been adequately reported. The aim of this study was to develop a nanoemulgel containing LV combined with Eu oil that could then be made into a nanoemulsion and assessed to determine its cytotoxicity against the cell line human chondrosarcoma-3 (HSC3) of carcinoma of the tongue. An I-optimal coordinate-exchange quadratic mixture design was adopted to optimize the investigated nanoemulsions. The droplet size and stability index of the developed formulations were measured to show characteristics of the nanoemulsions. The optimized LV loaded self-nanoemulsifying drug delivery system (LV-Eu-SNEDDS) was loaded into the gelling agent Carbopol 934 to develop the nanoemulgel and evaluated for its rheological properties. The cytotoxic efficiency of the optimized LV-Eu-SNEDDS loaded nanoemulgel was tested for cell viability, and the caspase-3 enzyme test was used against the HSC3 cell line of squamous carcinoma of the tongue. The optimized nanoemulsion had a droplet size of 85 nm and a stability index of 93%. The manufactured nanoemulgel loaded with the optimum LV-Eu-SNEDDS exhibited pseudoplastic flow with thixotropic behavior. The developed optimum LV-Eu-SNEDDS-loaded nanoemulgel had the best half-maximal inhibitory concentration (IC50) and caspase-3 enzyme values of the formulations developed for this study, and these features improved the ability of the nanoemulsion-loaded gel to deliver the drug to the investigated target cells. In addition, the in vitro cell viability studies revealed the synergistic effect between LV and Eu oil in the treatment of tongue cancer. These findings illustrated that the LV-Eu-SNEDDS-loaded gel formulation could be beneficial in the local treatment of tongue cancer.

3.
Gels ; 8(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35200484

RESUMEN

The goal of the current study is to develop a chitosan alginate nanoparticle system encapsulating the model drug, simvastatin (SIM-CA-NP) using a novel polyelectrolytic complexation method. The formulation was optimized using the central composite design by considering the concentrations of chitosan and alginate at five different levels (coded as +1.414, +1, 0, -1, and -1.414) in achieving minimum particle size (PS-Y1) and maximum entrapment efficiency (EE-Y2). A total of 13 runs were formulated (as projected by the Design-Expert software) and evaluated accordingly for the selected responses. On basis of the desirability approach (D = 0.880), a formulation containing 0.258 g of chitosan and 0.353 g of alginate could fulfill the prerequisites of optimum formulation in achieving 142.56 nm of PS and 75.18% EE. Optimized formulation (O-SIM-CAN) was further evaluated for PS and EE to compare with the theoretical results, and relative error was found to be within the acceptable limits, thus confirming the accuracy of the selected design. SIM release from O-SIM-CAN was retarded significantly even beyond 96 h, due to the encapsulation in chitosan alginate carriers. The cell viability study and Caspase-3 enzyme assay showed a notable difference in contrast to that of plain SIM and control group. All these stated results confirm that the alginate-chitosan nanoparticulate system enhanced the anti-proliferative activity of SIM.

4.
Drug Deliv ; 29(1): 254-262, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35014929

RESUMEN

Candida albicans is the fungus responsible for oral candidiasis, a prevalent disease. The development of antifungal-based delivery systems has always been a major challenge for researchers. This study was designed to develop a nanostructured lipid carrier (NLC) of sesame oil (SO) loaded with miconazole (MZ) that could overcome the solubility problems of MZ and enhance its antifungal activity against oral candidiasis. In the formulation of this study, SO was used as a component of a liquid lipid that showed an improved antifungal effect of MZ. An optimized MZ-loaded NLC of SO (MZ-SO NLC) was used, based on a central composite design-based experimental design; the particle size, dissolution efficiency, and inhibition zone against oral candidiasis were chosen as dependent variables. A software analysis provided an optimized MZ-SO NLC with a particle size of 92 nm, dissolution efficiency of 88%, and inhibition zone of 29 mm. Concurrently, the ex vivo permeation rate of the sheep buccal mucosa was shown to be significantly (p < .05) higher for MZ-SO NLC (1472 µg/cm2) as compared with a marketed MZ formulation (1215 µg/cm2) and an aqueous MZ suspension (470 µg/cm2). Additionally, an in vivo efficacy study in terms of the ulcer index against C. albicans found a superior result for the optimized MZ-SO NLC (0.5 ± 0.50) in a treated group of animals. Hence, it can be concluded that MZ, through an optimized NLC of SO, can treat candidiasis effectively by inhibiting the growth of C. albicans.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis Bucal/tratamiento farmacológico , Miconazol/farmacología , Sistema de Administración de Fármacos con Nanopartículas/química , Aceite de Sésamo/química , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Química Farmacéutica , Portadores de Fármacos/química , Liberación de Fármacos , Lípidos/química , Masculino , Miconazol/administración & dosificación , Miconazol/farmacocinética , Mucosa Bucal , Tamaño de la Partícula , Distribución Aleatoria , Ratas , Ovinos , Solubilidad , Propiedades de Superficie
5.
Sci Rep ; 12(1): 468, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013493

RESUMEN

The present study was carried out to develop cisplatin-loaded chitosan nanoparticles (CCNP) and cisplatin-loaded chitosan nanoparticle surface linked to rituximab (mAbCCNP) as targeted delivery formulations. The two formulations (CCNP and mAbCCNP) exhibited significant physicochemical properties. The zetapotential (ZP) values of CCNP and mAbCCNP were 30.50 ± 5.64 and 26.90 ± 9.09 mV, respectively; while their particle sizes were 308.10 ± 1.10 and 349.40 ± 3.20 z.d.nm, respectively. The poly dispersity index (PDI) of CCNP was 0.257 ± 0.030 (66.6% PDI), while that of mAbCCNP was 0.444 ± 0.007 (57.60% PDI). Differential scanning calorimetry (DSC) revealed that CCNP had endothermic peaks at temperatures ranging from 135.50 to 157.69 °C. A sharp exothermic peak was observed at 95.79 °C, and an endothermic peak was observed at 166.60 °C. The XRD study on CCNP and mAbCCNP revealed distinct peaks at 2θ. Four peaks at 35.38°, 37.47°, 49.29°, and 59.94° corresponded to CCNP, while three distinct peaks at 36.6°, 49.12°, and 55.08° corresponded to mAbCCNP. The in vitro release of cisplatin from nanoparticles followed zero order kinetics in both CCNP and mAbCCNP. The profile for CCNP showed 43.80% release of cisplatin in 6 h (R2 = 0.9322), indicating linearity of release with minimal deviation. However, the release profile of mAbCCNP showed 22.52% release in 4 h (R2 = 0.9416), indicating linearity with sustained release. In vitro cytotoxicity studies on MCF-7 ATCC human breast cancer cell line showed that CCNP exerted good cytotoxicity, with IC50 of 4.085 ± 0.065 µg/mL. However, mAbCCNP did not elicit any cytotoxic effect. At a dose of 4.00 µg/mL cisplatin induced early apoptosis and late apoptosis, chromatin condensation, while it produced secondary necrosis at a dose of 8.00 µg/mL. Potential delivery system for cisplatin CCNP and mAbCCNP were successfully formulated. The results indicated that CCNP was a more successful formulation than mAbCCNP due to lack of specificity of rituximab against MCF-7 ATCC human breast cancer cells.


Asunto(s)
Antineoplásicos/química , Quitosano/química , Cisplatino/química , Portadores de Fármacos/química , Rituximab/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/fisiopatología , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Humanos , Células MCF-7 , Nanopartículas/química , Tamaño de la Partícula , Rituximab/farmacología
6.
Pharmaceutics ; 13(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34959435

RESUMEN

Alopecia areata is a scarless, localized hair loss disorder that is typically treated with topical formulations that ultimately only further irritate the condition. Hence, the goal of this study was to develop a nanoemulsion with a base of garlic oil (GO) and apple cider vinegar (APCV) and loaded with minoxidil (MX) in order to enhance drug solubilization and permeation through skin. A distance coordinate exchange quadratic mixture design was used to optimize the proposed nanoemulsion. Span 20 and Tween 20 mixtures were used as the surfactant, and Transcutol was used as the co-surfactant. The developed formulations were characterized for their droplet size, minoxidil steady-state flux (MX Jss) and minimum inhibitory concentration (MIC) against Propionibacterium acnes. The optimized MX-GO-APCV nanoemulsion had a droplet size of 110 nm, MX Jss of 3 µg/cm2 h, and MIC of 0.275 µg/mL. The optimized formulation acquired the highest ex vivo skin permeation parameters compared to MX aqueous dispersion, and varying formulations lacked one or more components of the proposed nanoemulsion. GO and APCV in the optimized formulation had a synergistic, enhancing activity on the MX permeation across the skin membrane, and the percent permeated increased from 12.7% to 41.6%. Finally, the MX-GO-APCV nanoemulsion followed the Korsmeyer-Peppas model of diffusion, and the value of the release exponent (n) obtained for the formulations was found to be 1.0124, implying that the MX permeation followed Super case II transport. These results demonstrate that the MX-GO-APCV nanoemulsion formulation could be useful in promoting MX activity in treating alopecia areata.

7.
Biomed Res Int ; 2021: 1622270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409099

RESUMEN

This study investigates the antioxidant activities of lipid, protein, and carbohydrate extracts from the marine mollusk Perna canaliculus. Lipids were extracted using acetone, which was followed by protein extraction using the broad-spectrum enzyme Alcalase and then carbohydrate extraction using cetylpyridinium chloride. Eighty white BALB/c mice were divided into eight groups according to the administered extracts. Groups 1 and 5 were the control and toxin control groups, respectively. Groups 2, 3, and 4 were administered lipid, protein, and carbohydrate extracts, respectively. The other groups were administered P. canaliculus extracts as well as gentamicin and acetaminophen, known as ethanolic extracts, derived from Nerium oleander to induce oxidation stress. All groups showed significant improvements in body weight (p < 0.05). The lipid extract group showed a significant decrease in low-density lipoprotein cholesterol (p < 0.05) and a significant increase in high-density lipoprotein cholesterol (p < 0.05). After the toxin injection, all groups treated with P. canaliculus extracts showed increased antioxidant effects on hepatocytes (p < 0.05). The lipid extracts induced antioxidant effects to protect the kidney by increasing lipid peroxidation (p < 0.05) and catalase activities (p < 0.05). Also, protein extracts showed antioxidant effects by increasing glutathione and catalase levels significantly (p < 0.005). In conclusion, P. canaliculus extracts, especially lipids and proteins, have potent antioxidant activities that protect vital organs from oxidation stress.


Asunto(s)
Antioxidantes/administración & dosificación , Carbohidratos/administración & dosificación , Lípidos/administración & dosificación , Perna/química , Proteínas/administración & dosificación , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Productos Biológicos/aislamiento & purificación , Carbohidratos/aislamiento & purificación , Carbohidratos/farmacología , Catalasa/metabolismo , Etanol/administración & dosificación , Etanol/farmacología , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lípidos/aislamiento & purificación , Lípidos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Nerium/química , Estrés Oxidativo/efectos de los fármacos , Proteínas/aislamiento & purificación , Proteínas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA