Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 191, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956608

RESUMEN

BACKGROUND: Stem cell-derived therapies hold the potential for treatment of regenerative clinical indications. Static culture has a limited ability to scale up thus restricting its use. Suspension culturing can be used to produce target cells in large quantities, but also presents challenges related to stress and aggregation stability. METHODS: Utilizing a design of experiments (DoE) approach in vertical wheel bioreactors, we evaluated media additives that have versatile properties. The additives evaluated are Heparin sodium salt (HS), polyethylene glycol (PEG), poly (vinyl alcohol) (PVA), Pluronic F68 and dextran sulfate (DS). Multiple response variables were chosen to assess cell growth, pluripotency maintenance and aggregate stability in response to the additive inputs, and mathematical models were generated and tuned for maximal predictive power. RESULTS: Expansion of iPSCs using 100 ml vertical wheel bioreactor assay for 4 days on 19 different media combinations resulted in models that can optimize pluripotency, stability, and expansion. The expansion optimization resulted in the combination of PA, PVA and PEG with E8. This mixture resulted in an expansion doubling time that was 40% shorter than that of E8 alone. Pluripotency optimizer highlighted the importance of adding 1% PEG to the E8 medium. Aggregate stability optimization that minimizes aggregate fusion in 3D culture indicated that the interaction of both Heparin and PEG can limit aggregation as well as increase the maintenance capacity and expansion of hiPSCs, suggesting that controlling fusion is a critical parameter for expansion and maintenance. Validation of optimized solution on two cell lines in bioreactors with decreased speed of 40 RPM, showed consistency and prolonged control over aggregates that have high frequency of pluripotency markers of OCT4 and SOX2 (> 90%). A doubling time of around 1-1.4 days was maintained after passaging as clumps in the optimized medium. Controlling aggregate fusion allowed for a decrease in bioreactor speed and therefore shear stress exerted on the cells in a large-scale expansion. CONCLUSION: This study resulted in a control of aggregate size within suspension cultures, while informing about concomitant state control of the iPSC state. Wider application of this approach can address media optimization complexity and bioreactor scale-up challenges.


Asunto(s)
Reactores Biológicos , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Agregación Celular/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Diferenciación Celular
2.
Artículo en Inglés | MEDLINE | ID: mdl-31660541

RESUMEN

Islet transplantation effectively treats diabetes but relies on immune suppression and is practically limited by the number of cadaveric islets available. An alternative cellular source is insulin-producing cells derived from pluripotent cell sources. Three animal cohorts were used in the current study to evaluate whether an oxygen-providing macro-encapsulation device, 'ßAIR', could function in conjunction with human embryonic stem cells (hESCs) and their derivatives. The first cohort received macro-encapsulated undifferentiated hESCs, a second cohort received hESCs differentiated to a pancreatic progenitor state with limited endocrine differentiation. A reference cohort received human islets. Macro-encapsulation devices were implanted subcutaneously and monitored for up to 4 months. Undifferentiated pluripotent stem cells did not form teratoma but underwent cell death following implantation. Human C-peptide (hC- peptide) was detectable in host serum one week after implantation for both other cohorts. hC-peptide levels decreasing over time but remained detectable up to the end of the study. Key factors associated with mature endocrine cells were observed in grafts recovered from cohorts containing islets and hESC-derivatives including C-peptide, insulin, glucagon and urocortin 3. We conclude that the 'ßAIR' macroencapsulation device is compatible with both human islets and pluripotent derivatives, but has a limited capability of sustaining undifferentiated pluripotent cells.

3.
J Biol Chem ; 281(51): 39194-204, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17020886

RESUMEN

Membrane-bound factor Xa alone catalyzes prothrombin activation following initial cleavage at Arg(271) and prethrombin 2 formation (pre2 pathway). Factor Va directs prothrombin activation by factor Xa through the meizothrombin pathway, characterized by initial cleavage at Arg(320) (meizo pathway). We have shown previously that a pentapeptide encompassing amino acid sequence 695-699 from the COOH terminus of the heavy chain of factor Va (Asp-Tyr-Asp-Tyr-Gln, DYDYQ) inhibits prothrombin activation by prothrombinase in a competitive manner with respect to substrate. To understand the mechanism of inhibition of thrombin formation by DYDYQ, we have studied prothrombin activation by gel electrophoresis. Titration of plasma-derived prothrombin activation by prothrombinase, with increasing concentrations of peptide, resulted in complete inhibition of the meizo pathway. However, thrombin formation still occurred through the pre2 pathway. These data demonstrate that the peptide preferentially inhibits initial cleavage of prothrombin by prothrombinase at Arg(320). These findings were corroborated by studying the activation of recombinant mutant prothrombin molecules rMZ-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A) which can be only cleaved at Arg(320) and Arg(271), respectively. Cleavage of rMZ-II by prothrombinase was completely inhibited by low concentrations of DYDYQ, whereas high concentrations of pentapeptide were required to inhibit cleavage of rP2-II. The pentapeptide also interfered with prothrombin cleavage by membrane-bound factor Xa alone in the absence of factor Va increasing the rate for cleavage at Arg(271) of plasma-derived prothrombin or rP2-II. Our data demonstrate that pentapeptide DYDYQ has opposing effects on membrane-bound factor Xa for prothrombin cleavage, depending on the incorporation of factor Va in prothrombinase.


Asunto(s)
Factor Va/química , Hirudinas/química , Protrombina/metabolismo , Tromboplastina/química , Coagulación Sanguínea , Catálisis , Membrana Celular/metabolismo , Activación Enzimática , Factor Xa/química , Humanos , Cinética , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Protrombina/química , Proteínas Recombinantes/química , Trombina/química
4.
J Biol Chem ; 278(30): 28335-45, 2003 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-12738785

RESUMEN

We have recently demonstrated that amino acid region 323-331 of factor Va heavy chain (9 amino acids, AP4') contains a binding site for factor Xa (Kalafatis, M., and Beck, D. O. (2002) Biochemistry 41, 12715-12728). To ascertain which amino acids within this region are important for the effector and receptor properties of the cofactor with respect to factor Xa, we have synthesized three overlapping peptides (5 amino acids each) spanning the amino acid region 323-331 and tested them for their effect on prothrombinase complex assembly and function. Peptide containing amino acids 323EYFIA327 alone was found to increase the catalytic efficiency of factor Xa but had no effect on the fluorescent anisotropy of active site-labeled factor Xa (human factor Xa labeled in the active site with Oregon Green 488; [OG488]-EGR-hXa). In contrast, peptide containing the sequence 327AAEEV331 was found to interact with [OG488]-EGR-hXa with half-maximal saturation reached at approximately 150 microm, but it was unable to produce a cofactor effect on factor Xa. Peptide 325FIAAE329 inhibited prothrombinase activity and was able to partially decrease the fluorescent anisotropy of [OG488]-EGR-hXa but could not increase the catalytic efficiency of factor Xa with respect to prothrombin. A control peptide with the sequence FFFIA did not increase the catalytic efficiency of factor Xa, whereas a peptide with the sequence AAEMI was impaired in its capability to interact with [OG488]-EGR-hXa. Two mutant recombinant factor Va molecules (Glu323 --> Phe/Tyr324 --> Phe, factor VaFF; Glu330 --> Met/Val331 --> Ile, factor VaMI) showed impaired cofactor activity when used at limiting cofactor concentration, whereas the quadruple mutant (Glu323 --> Phe/Tyr324 --> Phe and Glu330 --> Met/Val331 --> Ile, factor VaFF/MI) had no cofactor activity under similar experimental conditions. Our data demonstrate that amino acid residues Glu323, Tyr324, Glu330, and Val331 of factor Va heavy chain are critical for expression of factor Va cofactor activity.


Asunto(s)
Factor Va/química , Ácido Glutámico/química , Tirosina/química , Valina/química , Aminoácidos/química , Animales , Anisotropía , Sitios de Unión , Western Blotting , Células COS , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Factor Xa/química , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/química , Unión Proteica , Protrombina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Trombina/química , Tromboplastina/química , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA