Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Biol ; 17(6): e3000331, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31226107

RESUMEN

Eukaryotes have evolved elaborate mechanisms to ensure that chromosomes segregate with high fidelity during mitosis and meiosis, and yet specific aneuploidies can be adaptive during environmental stress. Here, we identify a chromatin-based system required for inducible aneuploidy in a human pathogen. Candida albicans utilizes chromosome missegregation to acquire tolerance to antifungal drugs and for nonmeiotic ploidy reduction after mating. We discovered that the ancestor of C. albicans and 2 related pathogens evolved a variant of histone 2A (H2A) that lacks the conserved phosphorylation site for kinetochore-associated Bub1 kinase, a key regulator of chromosome segregation. Using engineered strains, we show that the relative gene dosage of this variant versus canonical H2A controls the fidelity of chromosome segregation and the rate of acquisition of tolerance to antifungal drugs via aneuploidy. Furthermore, whole-genome chromatin precipitation analysis reveals that Centromere Protein A/ Centromeric Histone H3-like Protein (CENP-A/Cse4), a centromeric histone H3 variant that forms the platform of the eukaryotic kinetochore, is depleted from tetraploid-mating products relative to diploid parents and is virtually eliminated from cells exposed to aneuploidy-promoting cues. We conclude that genetically programmed and environmentally induced changes in chromatin can confer the capacity for enhanced evolvability via chromosome missegregation.


Asunto(s)
Proteína A Centromérica/metabolismo , Segregación Cromosómica/fisiología , Histonas/metabolismo , Aneugénicos/metabolismo , Aneuploidia , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/fisiología , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Histonas/fisiología , Cinetocoros/metabolismo , Meiosis , Mitosis , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
2.
Cell ; 173(4): 1014-1030.e17, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727661

RESUMEN

Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Adenosina Trifosfato/metabolismo , Teorema de Bayes , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Inmunoprecipitación , Precursores del ARN/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genética , Telomerasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(47): E6446-55, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26554019

RESUMEN

The dicistrovirus intergenic region internal ribosome entry site (IRES) adopts a triple-pseudoknotted RNA structure and occupies the core ribosomal E, P, and A sites to directly recruit the ribosome and initiate translation at a non-AUG codon. A subset of dicistrovirus IRESs directs translation in the 0 and +1 frames to produce the viral structural proteins and a +1 overlapping open reading frame called ORFx, respectively. Here we show that specific mutations of two unpaired adenosines located at the core of the three-helical junction of the honey bee dicistrovirus Israeli acute paralysis virus (IAPV) IRES PKI domain can uncouple 0 and +1 frame translation, suggesting that the structure adopts distinct conformations that contribute to 0 or +1 frame translation. Using a reconstituted translation system, we show that ribosomes assembled on mutant IRESs that direct exclusive 0 or +1 frame translation lack reading frame fidelity. Finally, a nuclear magnetic resonance/small-angle X-ray scattering hybrid approach reveals that the PKI domain of the IAPV IRES adopts an RNA structure that resembles a complete tRNA. The tRNA shape-mimicry enables the viral IRES to gain access to the ribosome tRNA-binding sites and form intermolecular contacts with the ribosome that are necessary for initiating IRES translation in a specific reading frame.


Asunto(s)
Dicistroviridae/genética , Sitios Internos de Entrada al Ribosoma/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN de Transferencia/química , ARN de Transferencia/genética , Animales , Secuencia de Bases , Bovinos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Factores de Terminación de Péptidos , Ribosomas/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Proc Natl Acad Sci U S A ; 112(14): 4292-7, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831501

RESUMEN

RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ∼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.


Asunto(s)
Bacterias/enzimología , Cronobacter/enzimología , ADN/química , RecQ Helicasas/química , Adenosina Trifosfato/química , Anisotropía , Sitios de Unión , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , ADN de Cadena Simple/química , Escherichia coli/enzimología , Genoma Bacteriano , Hidrólisis , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA