Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell Rep ; 39(2): 245-257, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31728703

RESUMEN

KEY MESSAGE: A novel and robust lipofection-mediated transfection approach for the use of DNA-free Cas9/gRNA RNP for gene editing has demonstrated efficacy in plant cells. Precise genome editing has been revolutionized by CRISPR/Cas9 systems. DNA-based delivery of CRISPR/Cas9 is widely used in various plant species. However, protein-based delivery of the in vitro translated Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) complex into plant cells is still in its infancy even though protein delivery has several advantages. These advantages include DNA-free delivery, gene-edited host plants that are not transgenic, ease of use, low cost, relative ease to be adapted to high-throughput systems, and low off-target cleavage rates. Here, we show a novel lipofection-mediated transfection approach for protein delivery of the preassembled Cas9/gRNA RNP into plant cells for genome editing. Two lipofection reagents, Lipofectamine 3000 and RNAiMAX, were adapted for successful delivery into plant cells of Cas9/gRNA RNP. A green fluorescent protein (GFP) reporter was fused in-frame with the C-terminus of the Cas9 protein and the fusion protein was successfully delivered into non-transgenic tobacco cv. 'Bright Yellow-2' (BY2) protoplasts. The optimal efficiencies for Lipofectamine 3000- and RNAiMAX-mediated protein delivery were 66% and 48%, respectively. Furthermore, we developed a biolistic method for protein delivery based on the known proteolistics technique. A transgenic tobacco BY2 line expressing an orange fluorescence protein reporter pporRFP was targeted for knockout. We found that the targeted mutagenesis frequency for our Lipofectamine 3000-mediated protein delivery was 6%. Our results showed that the newly developed lipofection-mediated transfection approach is robust for the use of the DNA-free Cas9/gRNA technology for genome editing in plant cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Células Vegetales/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Agrobacterium , Biolística/métodos , Línea Celular , ADN , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutagénesis , Plantas Modificadas Genéticamente , Protoplastos , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA