Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(14): 8483-8499, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38811035

RESUMEN

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Biosíntesis de Proteínas , Ribosomas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ribosomas/metabolismo , Dominios Proteicos , Microscopía por Crioelectrón , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Modelos Moleculares , Aminoacil-ARN de Transferencia
2.
EMBO J ; 43(4): 484-506, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177497

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.


Asunto(s)
Bacillus subtilis , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ribosomas/metabolismo , Péptidos/metabolismo
3.
Mol Cell ; 83(23): 4290-4303.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37951216

RESUMEN

Reactive aldehydes are abundant endogenous metabolites that challenge homeostasis by crosslinking cellular macromolecules. Aldehyde-induced DNA damage requires repair to prevent cancer and premature aging, but it is unknown whether cells also possess mechanisms that resolve aldehyde-induced RNA lesions. Here, we establish photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) as a model system to study RNA crosslinking damage in the absence of confounding DNA damage in human cells. We find that such RNA damage causes translation stress by stalling elongating ribosomes, which leads to collisions with trailing ribosomes and activation of multiple stress response pathways. Moreover, we discovered a translation-coupled quality control mechanism that resolves covalent RNA-protein crosslinks. Collisions between translating ribosomes and crosslinked mRNA-binding proteins trigger their modification with atypical K6- and K48-linked ubiquitin chains. Ubiquitylation requires the E3 ligase RNF14 and leads to proteasomal degradation of the protein adduct. Our findings identify RNA lesion-induced translational stress as a central component of crosslinking damage.


Asunto(s)
ARN , Ubiquitina , Humanos , ARN/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Aldehídos , Biosíntesis de Proteínas
4.
bioRxiv ; 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37205477

RESUMEN

Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains and reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation by the ribosome quality control pathway. Notably, we see no evidence of mRNA cleavage by MutS2, nor does it promote ribosome rescue by tmRNA as SmrB cleavage does in E. coli. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in various bacteria.

5.
J Bacteriol ; 205(2): e0037022, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651772

RESUMEN

The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.


Asunto(s)
Proteínas Bacterianas , Factores de Transcripción , Proteínas Bacterianas/genética , Factores de Transcripción/metabolismo , Factores de Elongación de Péptidos/genética , Aminoácidos/metabolismo , Esporas Bacterianas/genética , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica
6.
Mol Cell ; 66(2): 194-205.e5, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28392174

RESUMEN

The eukaryotic translation factor eIF5A, originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. Using a combination of ribosome profiling and in vitro biochemistry, we report a much broader role for eIF5A in elongation and uncover a critical function for eIF5A in termination. Ribosome profiling of an eIF5A-depleted strain reveals a global elongation defect, with abundant ribosomes stalling at many sequences, not limited to proline stretches. Our data also show ribosome accumulation at stop codons and in the 3' UTR, suggesting a global defect in termination in the absence of eIF5A. Using an in vitro reconstituted translation system, we find that eIF5A strongly promotes the translation of the stalling sequences identified by profiling and increases the rate of peptidyl-tRNA hydrolysis more than 17-fold. We conclude that eIF5A functions broadly in elongation and termination, rationalizing its high cellular abundance and essential nature.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3' , Secuencias de Aminoácidos , Codón de Terminación , Perfilación de la Expresión Génica/métodos , Hidrólisis , Cinética , Factores de Iniciación de Péptidos/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factor 5A Eucariótico de Iniciación de Traducción
7.
Artículo en Inglés | MEDLINE | ID: mdl-28138069

RESUMEN

Ribosomes translate genetic information into polypeptides in several basic steps: initiation, elongation, termination and recycling. When ribosomes are arrested during elongation or termination, the cell's capacity for protein synthesis is reduced. There are numerous quality control systems in place to distinguish between paused ribosomes that need some extra input to proceed and terminally stalled ribosomes that need to be rescued. Here, we discuss similarities and differences in the systems for resolution of pauses and rescue of arrested ribosomes in bacteria and eukaryotes, and how ribosome profiling has transformed our ability to decipher these molecular events.This article is part of the themed issue 'Perspectives on the ribosome'.


Asunto(s)
Bacterias/metabolismo , Células Eucariotas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
8.
Cell Rep ; 11(1): 13-21, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25843707

RESUMEN

Ribosome profiling is a powerful method for globally assessing the activity of ribosomes in a cell. Despite its application in many organisms, ribosome profiling studies in bacteria have struggled to obtain the resolution necessary to precisely define translational pauses. Here, we report improvements that yield much higher resolution in E. coli profiling data, enabling us to more accurately assess ribosome pausing and refine earlier studies of the impact of polyproline motifs on elongation. We comprehensively characterize pausing at proline-rich motifs in the absence of elongation factor EFP. We find that only a small fraction of genes with strong pausing motifs have reduced ribosome density downstream, and we identify features that explain this phenomenon. These features allow us to predict which proteins likely have reduced output in the efp-knockout strain.


Asunto(s)
Escherichia coli/genética , Factores de Elongación de Péptidos/genética , Ribosomas/genética , Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas , ARN Mensajero/genética
9.
RNA ; 20(11): 1706-14, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25246654

RESUMEN

Messenger RNAs lacking a stop codon trap ribosomes at their 3' ends, depleting the pool of ribosomes available for protein synthesis. In bacteria, a remarkable quality control system rescues and recycles stalled ribosomes in a process known as trans-translation. Acting as a tRNA, transfer-messenger RNA (tmRNA) is aminoacylated, delivered by EF-Tu to the ribosomal A site, and accepts the nascent polypeptide. Translation then resumes on a reading frame within tmRNA, encoding a short peptide tag that targets the nascent peptide for degradation by proteases. One unsolved issue in trans-translation is how tmRNA and its protein partner SmpB preferentially recognize stalled ribosomes and not actively translating ones. Here, we examine the effect of the length of the 3' extension of mRNA on each step of trans-translation by pre-steady-state kinetic methods and fluorescence polarization binding assays. Unexpectedly, EF-Tu activation and GTP hydrolysis occur rapidly regardless of the length of the mRNA, although the peptidyl transfer to tmRNA decreases as the mRNA 3' extension increases and the tmRNA·SmpB binds less tightly to the ribosome with an mRNA having a long 3' extension. From these results, we conclude that the tmRNA·SmpB complex dissociates during accommodation due to competition between the downstream mRNA and the C-terminal tail for the mRNA channel. Rejection of the tmRNA·SmpB complex during accommodation is reminiscent of the rejection of near-cognate tRNA from the ribosome in canonical translation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Unión Proteica , Biosíntesis de Proteínas , Ribosomas/metabolismo
10.
RNA ; 20(2): 228-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24345396

RESUMEN

In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon-anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB's affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.


Asunto(s)
Escherichia coli/genética , Factor Tu de Elongación Peptídica/química , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antibacterianos/farmacología , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Guanosina Trifosfato/química , Hidrólisis , Cinética , Mutagénesis Sitio-Dirigida , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Factor Tu de Elongación Peptídica/genética , Mutación Puntual , Unión Proteica , Piridonas/farmacología , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética , Ribosomas/genética
11.
Mol Cell ; 51(1): 35-45, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23727016

RESUMEN

Translation factor eIF5A, containing the unique amino acid hypusine, was originally shown to stimulate Met-puromycin synthesis, a model assay for peptide bond formation. More recently, eIF5A was shown to promote translation elongation; however, its precise requirement in protein synthesis remains elusive. We use in vivo assays in yeast and in vitro reconstituted translation assays to reveal a specific requirement for eIF5A to promote peptide bond formation between consecutive Pro residues. Addition of eIF5A relieves ribosomal stalling during translation of three consecutive Pro residues in vitro, and loss of eIF5A function impairs translation of polyproline-containing proteins in vivo. Hydroxyl radical probing experiments localized eIF5A near the E site of the ribosome with its hypusine residue adjacent to the acceptor stem of the P site tRNA. Thus, eIF5A, like its bacterial ortholog EFP, is proposed to stimulate the peptidyl transferase activity of the ribosome and facilitate the reactivity of poor substrates like Pro.


Asunto(s)
Secuencias de Aminoácidos , Factores de Iniciación de Péptidos/fisiología , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Ribosomas/metabolismo , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Factor 5A Eucariótico de Iniciación de Traducción
12.
Proc Natl Acad Sci U S A ; 110(10): E878-87, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431150

RESUMEN

Although the ribosome is a very general catalyst, it cannot synthesize all protein sequences equally well. For example, ribosomes stall on the secretion monitor (SecM) leader peptide to regulate expression of a downstream gene. Using a genetic selection in Escherichia coli, we identified additional nascent peptide motifs that stall ribosomes. Kinetic studies show that some nascent peptides dramatically inhibit rates of peptide release by release factors. We find that residues upstream of the minimal stalling motif can either enhance or suppress this effect. In other stalling motifs, peptidyl transfer to certain aminoacyl-tRNAs is inhibited. In particular, three consecutive Pro codons pose a challenge for elongating ribosomes. The translation factor elongation factor P, which alleviates pausing at polyproline sequences, has little or no effect on other stalling peptides. The motifs that we identified are underrepresented in bacterial proteomes and show evidence of stalling on endogenous E. coli proteins.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/genética , Escherichia coli/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Genes Reporteros , Modelos Biológicos , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Elongación de Péptidos/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Ribosomas/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
RNA ; 17(9): 1727-36, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795410

RESUMEN

In bacteria, stalled ribosomes are recycled by a hybrid transfer-messenger RNA (tmRNA). Like tRNA, tmRNA is aminoacylated with alanine and is delivered to the ribosome by EF-Tu, where it reacts with the growing polypeptide chain. tmRNA entry into stalled ribosomes poses a challenge to our understanding of ribosome function because it occurs in the absence of a codon-anticodon interaction. Instead, tmRNA entry is licensed by the binding of its protein partner, SmpB, to the ribosomal decoding center. We analyzed a series of SmpB mutants and found that its C-terminal tail is essential for tmRNA accommodation but not for EF-Tu activation. We obtained evidence that the tail likely functions as a helix on the ribosome to promote accommodation and identified key residues in the tail essential for this step. In addition, our mutational analysis points to a role for the conserved K(131)GKK tail residues in trans-translation after peptidyl transfer to tmRNA, presumably EF-G-mediated translocation or translation of the tmRNA template. Surprisingly, analysis of A1492, A1493, and G530 mutants reveals that while these ribosomal nucleotides are essential for normal tRNA selection, they play little to no role in peptidyl transfer to tmRNA. These studies clarify how SmpB interacts with the ribosomal decoding center to license tmRNA entry into stalled ribosomes.


Asunto(s)
ARN Bacteriano/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Anticodón/genética , Dicroismo Circular , Codón/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Immunoblotting , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Aminoacilación de ARN de Transferencia
15.
J Biol Chem ; 284(50): 34809-18, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19840930

RESUMEN

Several nascent peptides stall ribosomes during their own translation in both prokaryotes and eukaryotes. Leader peptides that induce stalling can regulate downstream gene expression. Interestingly, stalling peptides show little sequence similarity and interact with the ribosome through distinct mechanisms. To explore the scope of regulation by stalling peptides and to better understand the mechanism of stalling, we identified and characterized new examples from random libraries. We created a genetic selection that ties the life of Escherichia coli cells to stalling at a specific site. This selection relies on the natural bacterial system that rescues arrested ribosomes. We altered transfer-messenger RNA, a key component of this rescue system, to direct the completion of a necessary protein if and only if stalling occurs. We identified three classes of stalling peptides: C-terminal Pro residues, SecM-like peptides, and the novel stalling sequence FXXYXIWPP. Like the leader peptides SecM and TnaC, the FXXYXIWPP peptide induces stalling efficiently by inhibiting peptidyl transfer. The nascent peptide exit tunnel and peptidyltransferase center are implicated in this stalling event, although mutations in the ribosome affect stalling on SecM and FXXYXIWPP differently. We conclude that ribosome stalling can be caused by numerous sequences and is more common than previously believed.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Péptidos/genética , Biosíntesis de Proteínas , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA