Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 50(6): e36, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-34928370

RESUMEN

Genome instability has been recognized as a key driver for microbial and cancer adaptation and thus plays a central role in many diseases. Genome instability encompasses different types of genomic alterations, yet most available genome analysis software are limited to just one type of mutation. To overcome this limitation and better understand the role of genetic changes in enhancing pathogenicity we established GIP, a novel, powerful bioinformatic pipeline for comparative genome analysis. Here, we show its application to whole genome sequencing datasets of Leishmania, Plasmodium, Candida and cancer. Applying GIP on available data sets validated our pipeline and demonstrated the power of our tool to drive biological discovery. Applied to Plasmodium vivax genomes, our pipeline uncovered the convergent amplification of erythrocyte binding proteins and identified a nullisomic strain. Re-analyzing genomes of drug adapted Candida albicans strains revealed correlated copy number variations of functionally related genes, strongly supporting a mechanism of epistatic adaptation through interacting gene-dosage changes. Our results illustrate how GIP can be used for the identification of aneuploidy, gene copy number variations, changes in nucleic acid sequences, and chromosomal rearrangements. Altogether, GIP can shed light on the genetic bases of cell adaptation and drive disease biomarker discovery.


Asunto(s)
Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Humanos , Neoplasias/genética
2.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903666

RESUMEN

How genome instability is harnessed for fitness gain despite its potential deleterious effects is largely elusive. An ideal system to address this important open question is provided by the protozoan pathogen Leishmania, which exploits frequent variations in chromosome and gene copy number to regulate expression levels. Using ecological genomics and experimental evolution approaches, we provide evidence that Leishmania adaptation relies on epistatic interactions between functionally associated gene copy number variations in pathways driving fitness gain in a given environment. We further uncover posttranscriptional regulation as a key mechanism that compensates for deleterious gene dosage effects and provides phenotypic robustness to genetically heterogenous parasite populations. Finally, we correlate dynamic variations in small nucleolar RNA (snoRNA) gene dosage with changes in ribosomal RNA 2'-O-methylation and pseudouridylation, suggesting translational control as an additional layer of parasite adaptation. Leishmania genome instability is thus harnessed for fitness gain by genome-dependent variations in gene expression and genome-independent compensatory mechanisms. This allows for polyclonal adaptation and maintenance of genetic heterogeneity despite strong selective pressure. The epistatic adaptation described here needs to be considered in Leishmania epidemiology and biomarker discovery and may be relevant to other fast-evolving eukaryotic cells that exploit genome instability for adaptation, such as fungal pathogens or cancer.


Asunto(s)
Adaptación Fisiológica/genética , Epistasis Genética , Genoma de Protozoos , Inestabilidad Genómica , Leishmania/genética , Dosificación de Gen , Aptitud Genética , Humanos , Leishmaniasis/parasitología
3.
PLoS Pathog ; 17(8): e1009875, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34432858

RESUMEN

Development of cervical cancer is directly associated with integration of human papillomavirus (HPV) genomes into host chromosomes and subsequent modulation of HPV oncogene expression, which correlates with multi-layered epigenetic changes at the integrated HPV genomes. However, the process of integration itself and dysregulation of host gene expression at sites of integration in our model of HPV16 integrant clone natural selection has remained enigmatic. We now show, using a state-of-the-art 'HPV integrated site capture' (HISC) technique, that integration likely occurs through microhomology-mediated repair (MHMR) mechanisms via either a direct process, resulting in host sequence deletion (in our case, partially homozygously) or via a 'looping' mechanism by which flanking host regions become amplified. Furthermore, using our 'HPV16-specific Region Capture Hi-C' technique, we have determined that chromatin interactions between the integrated virus genome and host chromosomes, both at short- (<500 kbp) and long-range (>500 kbp), appear to drive local host gene dysregulation through the disruption of host:host interactions within (but not exceeding) host structures known as topologically associating domains (TADs). This mechanism of HPV-induced host gene expression modulation indicates that integration of virus genomes near to or within a 'cancer-causing gene' is not essential to influence their expression and that these modifications to genome interactions could have a major role in selection of HPV integrants at the early stage of cervical neoplastic progression.


Asunto(s)
Carcinogénesis/patología , Cromatina/metabolismo , Genoma Viral , Papillomavirus Humano 16/aislamiento & purificación , Infecciones por Papillomavirus/complicaciones , Neoplasias del Cuello Uterino/patología , Integración Viral , Carcinogénesis/metabolismo , Cromatina/genética , Epigénesis Genética , Femenino , Humanos , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología
4.
Cell Rep ; 30(6): 1870-1882.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049017

RESUMEN

Aberrant macrophage activation during intracellular infection generates immunopathologies that can cause severe human morbidity. A better understanding of immune subversion strategies and macrophage phenotypic and functional responses is necessary to design host-directed intervention strategies. Here, we uncover a fine-tuned transcriptional response that is induced in primary and lesional macrophages infected by the parasite Leishmania amazonensis and dampens NF-κB and NLRP3 inflammasome activation. Subversion is amastigote-specific and characterized by a decreased expression of activating and increased expression of de-activating components of these pro-inflammatory pathways, thus revealing a regulatory dichotomy that abrogates the anti-microbial response. Changes in transcript abundance correlate with histone H3K9/14 hypoacetylation and H3K4 hypo-trimethylation in infected primary and lesional macrophages at promoters of NF-κB-related, pro-inflammatory genes. Our results reveal a Leishmania immune subversion strategy targeting host cell epigenetic regulation to establish conditions beneficial for parasite survival and open avenues for host-directed, anti-microbial drug discovery.


Asunto(s)
Histonas/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Animales , Leishmania
5.
Nat Ecol Evol ; 1(12): 1961-1969, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29109466

RESUMEN

The parasite Leishmania  donovani causes a fatal disease termed visceral leishmaniasis. The process through which the parasite adapts to environmental change remains largely unknown. Here we show that aneuploidy is integral for parasite adaptation and that karyotypic fluctuations allow for selection of beneficial haplotypes, which impact transcriptomic output and correlate with phenotypic variations in proliferation and infectivity. To avoid loss of diversity following karyotype and haplotype selection, L. donovani utilizes two mechanisms: polyclonal selection of beneficial haplotypes to create coexisting subpopulations that preserve the original diversity, and generation of new diversity as aneuploidy-prone chromosomes tolerate higher mutation rates. Our results reveal high aneuploidy turnover and haplotype selection as a unique evolutionary adaptation mechanism that L. donovani uses to preserve genetic diversity under strong selection. This unexplored process may function in other human diseases, including fungal infection and cancer, and stimulate innovative treatment options.


Asunto(s)
Aneuploidia , Haplotipos , Leishmania donovani/genética , Proteínas Protozoarias/genética , Selección Genética , Adaptación Biológica
6.
Nat Commun ; 6: 5903, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582907

RESUMEN

Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Transcriptoma , Empalme Alternativo , Animales , Evolución Biológica , Línea Celular , Epigénesis Genética , Perfilación de la Expresión Génica , Biblioteca de Genes , Genoma , Histonas/química , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Oligonucleótidos Antisentido , Fenotipo , Análisis de Secuencia de ARN
7.
Cell ; 143(1): 46-58, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20887892

RESUMEN

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


Asunto(s)
Elementos de Facilitación Genéticos , Genoma Humano , ARN no Traducido/metabolismo , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Humanos , ARN Mensajero/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA