Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Protoplasma ; 261(3): 543-551, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38135806

RESUMEN

The secretion of IL-8 has been found increasing for different reasons in human bone marrow stromal cells (BMSCs), resulting in poor prognosis in patients with hematologic neoplasms. Hypoxia, a typical feature of numerous hematologic neoplasms microenvironment, often produces hypoxia inducible factor-1α (HIF-1α) which stabilizes and promotes tumor progression. Besides, hypoxic conditions also induce IL-8 production in BMSCs. However, very little is known about the mechanism of increased IL-8 expression in BMSCs caused by hypoxia. In the present study, HIF-1α and IL-8 were found highly expressed in BMSC lines under hypoxic conditions. In addition, the expression and secretion of IL-8 were significantly inhibited by the knockdown of HIF-1α under hypoxic conditions. Furthermore, HIF-1α was found to transcriptionally regulate IL-8 by binding to the region of IL-8 promoter at - 147 to - 140. Collectively, these results demonstrate that IL-8's increase is partly due to the hypoxic microenvironment in hematologic neoplasms, and activation of HIF-1α in BMSCs contributes to the induction and transcriptional regulation of IL-8 expression.


Asunto(s)
Neoplasias Hematológicas , Células Madre Mesenquimatosas , Humanos , Hipoxia de la Célula/genética , Neoplasias Hematológicas/metabolismo , Hipoxia/metabolismo , Interleucina-8/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
2.
Cell Death Dis ; 14(12): 796, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052820

RESUMEN

Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Ratones , Humanos , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 92, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37953267

RESUMEN

BACKGROUND: Hypervirulent Klebsiella pneumoniae (hvKp) infection-induced sepsis-associated acute lung injury (ALI) has emerged as a significant clinical challenge. Increasing evidence suggests that activated inflammatory macrophages contribute to tissue damage in sepsis. However, the underlying causes of widespread macrophage activation remain unclear. METHODS: BALB/c mice were intravenously injected with inactivated hvKp (iHvKp) to observe lung tissue damage, inflammation, and M1 macrophage polarization. In vitro, activated RAW264.7 macrophage-derived exosomes (iHvKp-exo) were isolated and their role in ALI formation was investigated. RT-PCR was conducted to identify changes in exosomal miRNA. Bioinformatics analysis and dual-luciferase reporter assays were performed to validate MSK1 as a direct target of miR-155-5p. Further in vivo and in vitro experiments were conducted to explore the specific mechanisms involved. RESULTS: iHvKp successfully induced ALI in vivo and upregulated the expression of miR-155-5p. In vivo, injection of iHvKp-exo induced inflammatory tissue damage and macrophage M1 polarization. In vitro, iHvKp-exo was found to promote macrophage inflammatory response and M1 polarization through the activation of the p38-MAPK pathway. RT-PCR revealed exposure time-dependent increased levels of miR-155-5p in iHvKp-exo. Dual-luciferase reporter assays confirmed the functional role of miR-155-5p in mediating iHvKp-exo effects by targeting MSK1. Additionally, inhibition of miR-155-5p reduced M1 polarization of lung macrophages in vivo, resulting in decreased lung injury and inflammation induced by iHvKp-exo or iHvKp. CONCLUSIONS: The aforementioned results indicate that exosomal miR-155-5p drives widespread macrophage inflammation and M1 polarization in hvKp-induced ALI through the MSK1/p38-MAPK Axis.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Sepsis , Animales , Ratones , Klebsiella pneumoniae , Activación de Macrófagos , Lesión Pulmonar Aguda/genética , Inflamación , Macrófagos , Luciferasas , MicroARNs/genética
4.
Mol Cancer Res ; 21(12): 1366-1378, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698549

RESUMEN

Acute myeloid leukemia (AML), an aggressive hematopoietic malignancy, exhibits poor prognosis and a high recurrence rate largely because of primary and secondary drug resistance. Elevated serum IL6 levels have been observed in patients with AML and are associated with chemoresistance. Chemoresistant AML cells are highly dependent on oxidative phosphorylation (OXPHOS), and mitochondrial network remodeling is essential for mitochondrial function. However, IL6-mediated regulation of mitochondrial remodeling and its effectiveness as a therapeutic target remain unclear. We aimed to determine the mechanisms through which IL6 facilitates the development of chemoresistance in AML cells. IL6 upregulated mitofusin 1 (MFN1)-mediated mitochondrial fusion, promoted OXPHOS, and induced chemoresistance in AML cells. MFN1 knockdown impaired the effects of IL6 on mitochondrial function and chemoresistance in AML cells. In an MLL::AF9 fusion gene-induced AML mouse model, IL6 reduced chemosensitivity to cytarabine (Ara-C), a commonly used antileukemia drug, accompanied by increased MFN1 expression, mitochondrial fusion, and OXPHOS status. In contrast, anti-IL6 antibodies downregulated MFN1 expression, suppressed mitochondrial fusion and OXPHOS, enhanced the curative effects of Ara-C, and prolonged overall survival. In conclusion, IL6 upregulated MFN1-mediated mitochondrial fusion in AML, which facilitated mitochondrial respiration, in turn, inducing chemoresistance. Thus, targeting IL6 may have therapeutic implications in overcoming IL6-mediated chemoresistance in AML. IMPLICATIONS: IL6 treatment induces MFN1-mediated mitochondrial fusion, promotes OXPHOS, and confers chemoresistance in AML cells. Targeting IL6 regulation in mitochondria is a promising therapeutic strategy to enhance the chemosensitivity of AML.


Asunto(s)
Interleucina-6 , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Citarabina/farmacología , Resistencia a Antineoplásicos , Interleucina-6/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Dinámicas Mitocondriales
5.
Int J Med Sci ; 20(7): 976-984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324183

RESUMEN

Objectives: Red blood cell distribution width (RDW) is a widely used clinical parameter recently deployed in predicting various cancers. This study aimed to evaluate the prognostic value of RDW in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Methods: We conducted a retrospective study of 745 patients with HBV-related HCC, 253 patients with chronic hepatitis B (CHB), and 256 healthy individuals to compare their hematological parameters and analyze their RDW levels. Potential risk factors for long-term all-cause mortality in patients with HBV-related HCC were predicted using Multivariate Cox regression. A nomogram was generated, and its performance was evaluated. Results: The RDW of patients with HBV-related HCC was significantly higher than that of those with CHB and healthy controls. In the former, splenomegaly, liver cirrhosis, larger tumor diameter, multiple tumor number, portal vein tumor thrombus, and lymphatic or distant metastasis were significantly increased, and the later the Child-Pugh grade and Barcelona clinic liver cancer stage, the higher the RDW. Furthermore, multivariate Cox regression analysis identified RDW as an independent risk factor for predicting long-term all-cause mortality in patients with HBV-related HCC. Finally, we successfully generated a nomogram incorporating RDW and validated its predictive ability. Conclusions: RDW is a potentially valuable hematological marker for predicting the survival and prognosis of patients with HBV-related HCC. The nomogram incorporating RDW can be used as an effective tool to plan the individualized treatment of such patients.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B , Estudios Retrospectivos , Eritrocitos , Pronóstico
6.
Pest Manag Sci ; 79(9): 3022-3032, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36966485

RESUMEN

BACKGROUND: Fungal diseases remain important causes of crop failure and economic losses. As the resistance toward current selective fungicides becomes increasingly problematic, it is necessary to develop efficient fungicides with novel chemotypes. RESULTS: A series of novel quinazolin-6-ylcarboxylates which combined the structures of pyridine or heterocyclic motif and the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety, a binding group of ATP-binding site of gefitinib, were evaluated for their fungicidal activity on different phytopathogenic fungi. Most of these compounds showed excellent fungicidal activities against Botrytis cinerea and Exserohilum rostratum, especially compound F17 displayed the highest activity with EC50 values as 3.79 µg mL-1 against B. cinerea and 2.90 µg mL-1 against E. rostratum, which was similar to or even better than those of the commercial fungicides, such as pyraclostrobin (EC50 , 3.68, 17.38 µg mL-1 ) and hymexazol (EC50 , 4.56, 2.13 µg mL-1 ). Moreover, compound F17 significantly arrested the lesion expansion of B. cinerea infection on tomato detached leaves and strongly suppressed grey mold disease on tomato seedlings in greenhouse. The abilities of compound F17 to induce cell apoptosis of the non-germinated spores, to limit oxalic acid production, to reduce malate dehydrogenase (MDH) expression, and to block the active pocket of MDH protein were demonstrated in B. cinerea. CONCLUSION: The novel quinazolin-6-ylcarboxylates containing ATP-binding site-directed moiety, especially compound F17, could be developed as a potential fungicidal candidate for further study. © 2023 Society of Chemical Industry.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Botrytis , Esporas Fúngicas , Adenosina Trifosfato/farmacología , Relación Estructura-Actividad , Antifúngicos/farmacología , Enfermedades de las Plantas/microbiología
7.
iScience ; 26(2): 106080, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824285

RESUMEN

KRAS inhibitor AMG510 covalently modifies the G12C residue and inactivates the KRAS/G12C function. Because there are many reactive cysteines in the proteome, it is important to characterize AMG510 on-target modification and off-targets. Here, we presented a streamlined workflow to measure abundant AMG510 modified peptides including that of KRAS/G12C by direct profiling, and a pan-AMG510 antibody peptide IP workflow to profile less abundant AMG510 off-targets. We identified over 300 off-target sites with three distinct kinetic patterns, expanding the AMG510 modified proteome involved in the nucleocytoplasmic transport, response to oxidative stress, adaptive immune system, and glycolysis. We found that AMG510 covalently modified cys339 of ALDOA and inhibited its enzyme activity. Moreover, AMG510 modified KEAP1 cys288 and induced NRF2 accumulation in the nuclear of NSCLC cells independent of KRAS/G12C mutation. Our study provides a comprehensive resource of protein off-targets of AMG510 and elucidates potential toxicological sideeffects for this covalent KRASG12C inhibitor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA