Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Physiol Biochem ; 206: 108302, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38171134

RESUMEN

Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Germinación/genética , Semillas/genética , Semillas/metabolismo , Brassica rapa/genética , Mutagénesis , Estrés Fisiológico/genética , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Biotechnol J ; 18(5): 1153-1168, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637846

RESUMEN

Yellow seed is a desirable trait with great potential for improving seed quality in Brassica crops. Unfortunately, no natural or induced yellow seed germplasms have been found in Brassica napus, an important oil crop, which likely reflects its genome complexity and the difficulty of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we demonstrate the first application of CRISPR/Cas9 for creating yellow-seeded mutants in rapeseed. The targeted mutations of the BnTT8 gene were stably transmitted to successive generations, and a range of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The yellow-seeded phenotype could be recovered only in targeted mutants of both BnTT8 functional copies, indicating that the redundant roles of BnA09.TT8 and BnC09.TT8b are vital for seed colour. The BnTT8 double mutants produced seeds with elevated seed oil and protein content and altered fatty acid (FA) composition without any serious defects in the yield-related traits, making it a valuable resource for rapeseed breeding programmes. Chemical staining and histological analysis showed that the targeted mutations of BnTT8 completely blocked the proanthocyanidin (PA)-specific deposition in the seed coat. Further, transcriptomic profiling revealed that the targeted mutations of BnTT8 resulted in the broad suppression of phenylpropanoid/flavonoid biosynthesis genes, which indicated a much more complex molecular mechanism underlying seed colour formation in rapeseed than in Arabidopsis and other Brassica species. In addition, gene expression analysis revealed the possible mechanism through which BnTT8 altered the oil content and fatty acid composition in seeds.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Color , Mutagénesis/genética , Semillas/genética
3.
Theor Appl Genet ; 132(7): 2111-2123, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30980103

RESUMEN

The INDEHISCENT (IND) and ALCATRAZ (ALC) gene homologues have been reported to be essential for dehiscence of fruits in Brassica species. But their functions for pod shatter resistance in Brassica napus, an important oil crops, are not well understood. Here, we assessed the functions of these two genes in rapeseed using CRISPR/Cas9 technology. The induced mutations were stably transmitted to successive generations, and a variety of homozygous mutants with loss-of-function alleles of the target genes were obtained for phenotyping. The results showed that the function of BnIND gene is essential for pod shatter and highly conserved in Brassica species, whereas the BnALC gene appears to have limited potential for rapeseed shatter resistance. The homoeologous copies of the BnIND gene have partially redundant roles in rapeseed pod shatter, with BnA03.IND exhibiting higher contributions than BnC03.IND. Analysis of data obtained from the gene expression and sequence variations of gene copies revealed that cis-regulatory divergences alter gene expression and underlie the functional differentiation of BnIND homologues. Collectively, our results generate valuable resources for rapeseed breeding programs, and more importantly provide a strategy to improve polyploid crops.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brassica napus/genética , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Semillas/fisiología , Alelos , Edición Génica , Técnicas de Inactivación de Genes , Genes de Plantas , Fenotipo , Plantas Modificadas Genéticamente
4.
Nat Cell Biol ; 15(10): 1186-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23955302

RESUMEN

Subcellular localization is emerging as an important mechanism for mTORC1 regulation. We report that the tuberous sclerosis complex (TSC) signalling node, TSC1, TSC2 and Rheb, localizes to peroxisomes, where it regulates mTORC1 in response to reactive oxygen species (ROS). TSC1 and TSC2 were bound by peroxisomal biogenesis factors 19 and 5 (PEX19 and PEX5), respectively, and peroxisome-localized TSC functioned as a Rheb GTPase-activating protein (GAP) to suppress mTORC1 and induce autophagy. Naturally occurring pathogenic mutations in TSC2 decreased PEX5 binding, and abrogated peroxisome localization, Rheb GAP activity and suppression of mTORC1 by ROS. Cells lacking peroxisomes were deficient in mTORC1 repression by ROS, and peroxisome-localization-deficient TSC2 mutants caused polarity defects and formation of multiple axons in neurons. These data identify a role for the TSC in responding to ROS at the peroxisome, and identify the peroxisome as a signalling organelle involved in regulation of mTORC1.


Asunto(s)
Autofagia , Regulación Enzimológica de la Expresión Génica , Complejos Multiproteicos/genética , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Animales , Línea Celular , Células HEK293 , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de la Membrana/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Unión Proteica , Ratas , Serina-Treonina Quinasas TOR/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
5.
Mol Carcinog ; 49(5): 429-39, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20146253

RESUMEN

The tuberous sclerosis complex 2 (Tsc2) gene product, tuberin, acts as a negative regulator of mTOR signaling, and loss of tuberin function leads to tumors of the brain, skin, kidney, heart, and lungs. Previous studies have shown that loss of tuberin function affects the stability and subcellular localization of the cyclin-dependent kinase inhibitor (CKI) p27, although the mechanism(s) by which tuberin modulates p27 stability has/have not been elucidated. Previous studies have also shown that AMP-activated protein kinase (AMPK), which functions in an energy-sensing pathway in the cell, becomes activated in the absence of tuberin. Here we show that in Tsc2-null tumors and cell lines, AMPK activation correlates with an increase in p27 levels, and inhibition of AMPK signaling decreases p27 levels in these cells. In addition, activation of AMPK led to phosphorylation of p27 at the conserved terminal threonine residue of murine p27 (T197) in both in vitro kinase assays and in cells. Phosphorylation of p27 at T197 led to increased interaction between p27 and 14-3-3 proteins and increased the protein stability of p27. Furthermore, activation of AMPK signaling promoted the interaction between p27 and 14-3-3 proteins and increased the stability of the p27 protein in a manner that was dependent on T197. These data identify a conserved mechanism for the regulation of p27 stability via phosphorylation at the terminal threonine (mT197/hT198) and binding of 14-3-3 proteins, which when AMPK is activated results in stabilization of the p27 protein.


Asunto(s)
Proteínas 14-3-3/metabolismo , Adenilato Quinasa/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Animales , Línea Celular , Humanos , Ratones , Fosforilación , Unión Proteica , Transducción de Señal
6.
Proc Natl Acad Sci U S A ; 107(9): 4153-8, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160076

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a cellular damage sensor that coordinates the cell cycle with damage-response checkpoints and DNA repair to preserve genomic integrity. However, ATM also has been implicated in metabolic regulation, and ATM deficiency is associated with elevated reactive oxygen species (ROS). ROS has a central role in many physiological and pathophysiological processes including inflammation and chronic diseases such as atherosclerosis and cancer, underscoring the importance of cellular pathways involved in redox homeostasis. We have identified a cytoplasmic function for ATM that participates in the cellular damage response to ROS. We show that in response to elevated ROS, ATM activates the TSC2 tumor suppressor via the LKB1/AMPK metabolic pathway in the cytoplasm to repress mTORC1 and induce autophagy. Importantly, elevated ROS and dysregulation of mTORC1 in ATM-deficient cells is inhibited by rapamycin, which also rescues lymphomagenesis in Atm-deficient mice. Our results identify a cytoplasmic pathway for ROS-induced ATM activation of TSC2 to regulate mTORC1 signaling and autophagy, identifying an integration node for the cellular damage response with key pathways involved in metabolism, protein synthesis, and cell survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenilato Quinasa/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos , Estrés Oxidativo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Serina-Treonina Quinasas TOR , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
7.
Clin Cancer Res ; 15(1): 81-90, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19118035

RESUMEN

PURPOSE: p27 localization and expression has prognostic and predictive value in cancer. Little is known regarding expression patterns of p27 in renal cell carcinoma (RCC) or how p27 participates in disease progression or response to therapy. EXPERIMENTAL DESIGN: RCC-derived cell lines, primary tumors, and normal renal epithelial cells were analyzed for p27 expression, phosphorylation (T157 of the NLS), and subcellular localization. RCC-derived cell lines were treated with phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitors and effects on p27 localization were assessed. The potential contribution of cytoplasmic p27 to resistance to apoptosis was also evaluated. RESULTS: p27 was elevated in tumors compared with matched controls, and cytoplasmic mislocalization of p27 was associated with increasing tumor grade. Cytoplasmic localization of p27 correlated with phosphorylation at T157, an AKT phosphorylation site in the p27 NLS. In RCC cell lines, activated PI3K/AKT signaling was accompanied by mislocalization of p27. AKT activation and phosphorylation of p27 was associated with resistance to apoptosis, and small interfering RNA knockdown of p27 or relocalization to the nucleus increased apoptosis in RCC cells. Treatment with the PI3K inhibitors LY294002 or wortmannin resulted in nuclear relocalization of p27, whereas mTOR inhibition by rapamycin did not. CONCLUSIONS: In RCC, p27 is phosphorylated at T157 of the NLS, with increasing tumor grade associated with cytoplasmic p27. PI3K inhibition (which reduces AKT activity) reduces T157 phosphorylation and induces nuclear relocalization of p27, whereas mTOR inhibition does not. Clinical testing of these findings may provide a rational approach for use of mTOR and PI3K/AKT pathway inhibitors in patients with RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Citoplasma/metabolismo , Neoplasias Renales/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Humanos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/farmacología , Serina-Treonina Quinasas TOR
8.
Cancer Res ; 68(16): 6496-506, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18701472

RESUMEN

Tuberin, the Tsc2 gene product, integrates the phosphatidylinositol 3-kinase/mitogen-activated protein kinase (mitogenic) and LKB1/AMP-activated protein kinase (AMPK; energy) signaling pathways, and previous independent studies have shown that loss of tuberin is associated with elevated AMPK signaling and altered p27 function. In Tsc2-null tumors and tumor-derived cells from Eker rats, we observed elevated AMPK signaling and concordant cytoplasmic mislocalization of p27. Cytoplasmic localization of p27 in Tsc2-null cells was reversible pharmacologically using inhibitors of the LKB1/AMPK pathway, and localization of p27 to the cytoplasm could be induced directly by activating AMPK physiologically (glucose deprivation) or genetically (constitutively active AMPK) in Tsc2-proficient cells. Furthermore, AMPK phosphorylated p27 in vitro on at least three sites including T170 near the nuclear localization signal, and T170 was shown to determine p27 localization in response to AMPK signaling. p27 functions in the nucleus to suppress cyclin-dependent kinase-2 (Cdk2) activity and has been reported to mediate an antiapoptotic function when localized to the cytoplasm. We found that cells with elevated AMPK signaling and cytoplasmic p27 localization exhibited elevated Cdk2 activity, which could be suppressed by inhibiting AMPK signaling. In addition, cells with elevated AMPK signaling and cytoplasmic p27 localization were resistant to apoptosis, which could be overcome by inhibition of AMPK signaling and relocalization of p27 to the nucleus. These data show that AMPK signaling determines the subcellular localization of p27, and identifies loss of integration of pathways controlling energy balance, the cell cycle, and apoptosis due to aberrant AMPK and p27 function as a feature of cells that have lost the Tsc2 tumor suppressor gene.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoplasma/metabolismo , Complejos Multienzimáticos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología , Proteínas Quinasas Activadas por AMP , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Fosforilación , Ratas , Fracciones Subcelulares , Proteína 2 del Complejo de la Esclerosis Tuberosa
9.
Toxicol Pathol ; 35(2): 233-41, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17366317

RESUMEN

Multiple renal tubular cell adenomas and atypical tubular hyperplasia were diagnosed in 2 high-dose and 1 mid-dose female Sprague-Dawley (Crl:CD (SD)IGS BR) rats from a 90-day toxicity study of an amino acid found in green tea. The tumors were bilateral multicentric adenomas accompanied by atypical foci of renal tubular hyperplasia in both kidneys of the 3 animals. Toxic tubular changes that typically accompany renal carcinogenesis were not seen in any of the other animals of the study, suggesting rather, an underlying germline mutation of a tumor suppressor gene in these three rats. The histological appearance of these tumors and short latency was reminiscent of the spontaneous lesions reported to arise in Sprague-Dawley rats in the Nihon rat model. Nihon rats develop kidney tumors as a result of a spontaneous mutation in the rat homologue of the Birt-Hogg-Dubé gene (Bhd). Frozen samples of liver from two tumor-bearing rats were assayed for germline alterations in the Bhd gene. The entire coding region (exons 3-13) of the Bhd gene was sequenced, and a guanine (nt106G) to adenine (nt106A) polymorphism was detected resulting in a glycine to arginine (G36R) substitution in both tumor-bearing animals. In the study animals, the frequency of the A-allele (adenine) was determined to be 27% (19/70). Interestingly, rats obtained from two other sources (n = 17) only carried the nt106G-allele, consistent with the published rat sequence for this gene. Genetic fingerprinting of microsatellite loci indicated that the rats had a shared genetic background. Laser capture microdissection (LCM) of the tumor cells demonstrated a loss of heterozygosity in the Bhd gene in neoplastic cells of one of the two animals. Taken together, these data suggest that the tumors observed in these animals arose spontaneously as a result of a shared genetic susceptibility leading to the development of renal tubular neoplasms.


Asunto(s)
Adenoma/inducido químicamente , Glutamatos/toxicidad , Neoplasias Renales/inducido químicamente , Túbulos Renales/patología , Adenoma/genética , Adenoma/patología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Hiperplasia/inducido químicamente , Hiperplasia/genética , Hiperplasia/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Túbulos Renales/efectos de los fármacos , Pérdida de Heterocigocidad/genética , Masculino , Proteínas/genética , Ratas , Ratas Sprague-Dawley
10.
J Cell Biol ; 173(2): 279-89, 2006 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-16636147

RESUMEN

Loss of tuberin, the product of TSC2 gene, increases mammalian target of rapamycin (mTOR) signaling, promoting cell growth and tumor development. However, in cells expressing tuberin, it is not known how repression of mTOR signaling is relieved to activate this pathway in response to growth factors and how hamartin participates in this process. We show that hamartin colocalizes with hypophosphorylated tuberin at the membrane, where tuberin exerts its GTPase-activating protein (GAP) activity to repress Rheb signaling. In response to growth signals, tuberin is phosphorylated by AKT and translocates to the cytosol, relieving Rheb repression. Phosphorylation of tuberin at serines 939 and 981 does not alter its intrinsic GAP activity toward Rheb but partitions tuberin to the cytosol, where it is bound by 14-3-3 proteins. Thus, tuberin bound by 14-3-3 in response to AKT phosphorylation is sequestered away from its membrane-bound activation partner (hamartin) and its target GTPase (Rheb) to relieve the growth inhibitory effects of this tumor suppressor.


Asunto(s)
Membrana Celular/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular , Sustancias de Crecimiento/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Modelos Biológicos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/farmacología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas ras/metabolismo
11.
Nephrol Ther ; 2 Suppl 2: S119-22, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17373211

RESUMEN

Research into inherited cancer syndromes that involve defective tumor suppressor genes has increased our understanding of the genetic basis of this disease. Dramatic advances over the past decade have established the tuberous sclerosis complex 2 tumor suppressor gene (TSC2) as a key player in signal transduction pathways involved in the development of cancer. Importantly, the discovery of the functional link between TSC2 and the polycystic kidney disease 1 gene (PKD1) is beginning to build a foundation for understanding the heritable diseases associated with defects in each of these genes, namely, tuberous sclerosis complex and polycystic kidney disease. In this review, we summarize the latest findings about the functions of the TSC2 gene product, tuberin, and their implications for the development of cystic kidney disease.


Asunto(s)
Enfermedades Renales Poliquísticas/genética , Proteínas Supresoras de Tumor/genética , Genes Supresores de Tumor , Humanos , Transducción de Señal , Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa
12.
Proc Natl Acad Sci U S A ; 102(24): 8644-9, 2005 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-15937110

RESUMEN

Gene-environment interactions are important determinants of cancer risk. Traditionally, gene-environment interactions are thought to contribute to tumor-suppressor-gene penetrance by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. Here, we demonstrate that a distinctive type of gene-environment interaction can occur during development to enhance the penetrance of a tumor-suppressor-gene defect in the adult. Using rats carrying a germ-line defect in the tuberous sclerosis complex 2 (Tsc-2) tumor-suppressor gene predisposed to uterine leiomyomas, we show that an early-life exposure to diethylstilbestrol during development of the uterus increased tumor-suppressor-gene penetrance from 65% to >90% and tumor multiplicity and size in genetically predisposed animals, but it failed to induce tumors in wild-type rats. This exposure was shown to impart a hormonal imprint on the developing uterine myometrium, causing an increase in expression of estrogen-responsive genes before the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to steroid hormones relative to tumors that developed in unexposed animals. These data suggest that exposure to environmental factors during development can permanently reprogram normal physiological tissue responses and thus lead to increased tumor-suppressor-gene penetrance in genetically susceptible individuals.


Asunto(s)
Dietilestilbestrol/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad/genética , Leiomioma/genética , Penetrancia , Efectos Tardíos de la Exposición Prenatal , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética , Animales , Western Blotting , Femenino , Hormonas Esteroides Gonadales/metabolismo , Inmunohistoquímica , Leiomioma/metabolismo , Miometrio/metabolismo , Miometrio/patología , Embarazo , Ratas , Ratas Mutantes , Proteínas Represoras/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
13.
Am J Pathol ; 162(2): 457-68, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12547704

RESUMEN

Somatic loss of function of the tuberous sclerosis 2 (TSC2) tumor suppressor gene leads to the development of benign and malignant lesions of the kidney, brain, uterus, spleen, and liver and germline loss of function of this tumor suppressor gene is embryonic lethal. In addition, the gene product of TSC2, tuberin, is necessary for normal function of the polycystic kidney disease 1 (PKD1) gene product, polycystin-1, which is required for normal cell-cell and cell-matrix interactions. We report here the development of severe polycystic kidney disease in three cases of young Eker rats carrying a germline inactivation of one allele of the Tsc2 gene. Extrarenal tumors were also noted in the spleen and uterus of these animals, which was remarkable given their young age and in the case of the spleen, diffuse involvement of the affected organ. A cell line (EKT2) was established from an affected kidney of one of these animals and used in conjunction with tissues from affected animals to elucidate the defect responsible for the development of these lesions. Affected cells were determined to have lost the wild-type Tsc2 allele while retaining two copies of chromosome 10 containing the mutant Tsc2 allele along with two normal copies of the Pkd1 gene. The genetic data, bilateral nature of the observed kidney disease, and extent of involvement of the spleen and kidney indicate that, in affected animals, loss of the wild-type Tsc2 allele occurred during embryogenesis, probably as a result of chromosome nondisjunction, with affected animals being mosaics for loss of Tsc2 gene function.


Asunto(s)
Genes Supresores de Tumor , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Proteínas Represoras/genética , Eliminación de Secuencia , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Transformación Celular Neoplásica , Cartilla de ADN , Fluoresceína-5-Isotiocianato , Genotipo , Mutación de Línea Germinal , Humanos , Cariotipificación , Leiomioma/patología , Especificidad de Órganos , Ratas , Ratas Long-Evans , Valores de Referencia , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor
14.
Zhonghua Yu Fang Yi Xue Za Zhi ; 36(7): 487-90, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12411150

RESUMEN

OBJECTIVE: To detect tumor cells in the peripheral blood of patients with hepatocellular carcinoma (HCC) by using the mRNA of the MAGE-1 and MAGE-3 genes as specific tumor markers. METHODS: Peripheral blood was obtained from 25 HCC patients and 20 healthy volunteers. The mRNA of the MAGE-1 and MAGE-3 genes in the peripheral blood mononuclear cells (PBMCs) was detected by nested RT-PCR. The MAGE-1 and MAGE-3 transcripts in the tumor tissues of these HCC patients were also detected by RT-PCR. RESULTS: Of the 25 HCC patients, MAGE-1 and MAGE-3 mRNA were positive in 44% (11/25) and 36% (9/25) of PBMCs respectively, and in 68% (17/25) and 56% (14/25) of HCC tissues respectively. In the PBMCs of the 25 HCC patients, 16 (64%) samples were detected to express at least one type of MAGE mRNA. MAGE mRNA were not detected in the PBMCs from the patients whose tumors did not express the MAGE genes, nor in the PBMCs from the 20 healthy donors. The positive rate of MAGE mRNA in the PBMCs was closely correlated with the TNM stages and the diameter of tumors, but there was no correlation between the positive rate of MAGE mRNA in PBMCs and tumor differentiation degree or serum alpha-FP level. Of 9 HCC patients whose serum alpha-FP was normal or slightly elevated (< 50 ng/ml), 6 were MAGE-1 and/or MAGE-3 mRNA positive in their PBMCs. CONCLUSION: MAGE-1 and MAGE-3 mRNA could be specifically detected with high percentage in the PBMCs of HCC patients by our method. They can be used as specific tumor markers for the detection of the circulating HCC cells, and the detection results may be helpful to evaluate the prognosis of HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Antígenos de Neoplasias , Carcinoma Hepatocelular/genética , Humanos , Leucocitos Mononucleares , Neoplasias Hepáticas/genética , Antígenos Específicos del Melanoma , Proteínas de Neoplasias , ARN Mensajero/genética
15.
Cancer Res ; 62(22): 6475-80, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12438239

RESUMEN

Tuberin, the product of the tuberous sclerosis complex 2 tumor suppressor gene, is a phosphoprotein that negatively regulates phosphatidylinositol 3'-kinase signaling downstream of Akt. Several high stringency 14-3-3 binding sites that overlapped with Akt phosphorylation sites were identified in tuberin in silico. Recognition of tuberin by an alpha-14-3-3 binding site-specific antibody correlated with mitogen-induced phosphorylation of tuberin and recognition of tuberin by an alpha-Akt phosphorylation substrate antibody. Recognition of tuberin by both antibodies was blocked by inhibiting phosphatidylinositol 3'-kinase activity. Using a protein domain microarray, a tuberin peptide containing Ser(939) demonstrated phospho-specific binding to 14-3-3. Glutathione S-transferase pull-down assays with 14-3-3 fusion proteins revealed that all seven 14-3-3 isoforms (beta, gamma, zeta, epsilon, tau, eta, and sigma) could bind tuberin, and this interaction was abrogated by competition with phosphorylated but not unphosphorylated Ser(939) tuberin peptide. Tuberin also coimmunoprecipitated with 14-3-3, confirming the interaction between endogenous 14-3-3 and tuberin. These data establish the presence of functional and overlapping 14-3-3 and Akt recognition site(s) in tuberin.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Proteínas 14-3-3 , Células 3T3/metabolismo , Animales , Anticuerpos/metabolismo , Especificidad de Anticuerpos , Sitios de Unión , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Fosforilación , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt , Ratas , Transducción de Señal/fisiología , Especificidad por Sustrato , Proteína 2 del Complejo de la Esclerosis Tuberosa , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor , Tirosina 3-Monooxigenasa/inmunología
16.
Cancer Res ; 62(13): 3766-72, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097287

RESUMEN

Unregulated proliferation of mesenchymal cells in leiomyomas, lipomas, hamartomas,and other diseases has been linked to the high mobility group (HMGA) family of DNA architectural proteins. HMGA genes are primarily expressed during embryonal development and silenced in adult tissues but can become reactivated in neoplasia as a result of chromosomal rearrangements. Although the genetic data suggesting a role for HMGA proteins in tumorigenesis are compelling, the biological role of these proteins in mesenchymal proliferation and differentiation is incompletely defined. Uterine myometria and spontaneous leiomyomas from the Eker rat, which carries a germ-line mutation in the tuberous sclerosis complex-2 (Tsc2) tumor suppressor gene, were analyzed for genetic defects in and expression of the Tsc2 and HMGA proteins. Eker leiomyomas exhibited a 50% incidence of loss of the wild-type Tsc2 allele and an almost uniform loss of protein expression, implicating loss of function of the Tsc2 gene in these tumors. Concomitantly, HMGA2 protein, which was completely absent in normal myometria, was expressed in 16 of 19 Eker leiomyomas. HMGA1 was expressed in both leiomyoma and normal myometria. No structural alterations were observed at the HMGA2 locus in either primary rat leiomyomas or leiomyoma-derived cell lines that expressed HMGA2. These data support a role for HMGA2 in the development of smooth muscle neoplasms and suggest HMGA2 expression is a point of convergence between the human disease and the Eker rat model. Furthermore, these data indicate that aberrant HMGA2 expression can result from dysfunction of the Tsc2 tumor suppressor gene, in the absence of structural alterations involving the HMGA2 locus.


Asunto(s)
Genes Supresores de Tumor/fisiología , Proteína HMGA2/biosíntesis , Leiomioma/genética , Proteínas Represoras/genética , Neoplasias Uterinas/genética , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteína HMGA2/genética , Leiomioma/metabolismo , Pérdida de Heterocigocidad , Ratas , Proteínas Represoras/biosíntesis , Translocación Genética , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor , Regulación hacia Arriba , Neoplasias Uterinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA