Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Obes Sci Pract ; 10(4): e786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39130194

RESUMEN

Background: Type 2 diabetes (T2D) is a risk factor for female breast cancer (FBC). Obesity has also been associated with FBC, also depending on menopausal status. This study aimed to evaluate the impact of obesity and T2D on the development, aggressiveness, and invasiveness of FBC. Methods: Demographic, clinical, and histopathological data from 335 women with FBC were collected, and analyzed according to weight category (102 normal weight, 117 overweight, and 116 living with obesity) and the presence/absence of T2D. Results: Age at oncologic diagnosis was not statistically significantly different for body weight; women with overweight or obesity were more likely to have an oncologic diagnosis after menopause than normal weight (p < 0.001). The presence of overweight/obesity and T2D seemed to be associated with a higher incidence of metastasis, recurrence, and triple-negative breast cancer (TNBC) subtype (p < 0.001). Excess body weight was also associated with high histologic grade (G3) (p < 0.005). Conclusions: These results confirm excess body weight and T2D as unfavorable prognostic factors in terms of the presence of the TNBC subtype, tumor metastasis, recurrence, and aggressiveness (G3 and Ki-67 > 20%). This study highlights the importance of prevention in all women, with early screening, and adequate nutritional programs.

2.
Biofabrication ; 16(4)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38986455

RESUMEN

Over the past three decades, cell therapy development has fallen short of expectations, with many cellular sources demonstrating a 'Janus effect' and raising safety concerns. Extracellular vesicles (EVs), supported by advanced technologies, present a promising avenue in regenerative medicine, offering benefits such as immune tolerance and avoidance of negative aspects associated with cell transplants. Our previous research showcased enhanced and organized subcutaneous vascularization using three-dimensional bioprinted patches containing HUVEC-derived EVs in immunodeficient animal models. In this context, stress conditions on the cells of origin further boosted the EVs' neoangiogenic potential. Since neovascularization is the first regenerative target requiring restoration, the present study aims to complement our previous work by employing an injectable gelatin methacrylate (GelMA) hydrogel functionalized with HUVEC-derived EVs in a pathological condition of acute myocardial infarction. This bioactive hydrogel resulted in reduced fibrosis, improved contractility, and promoted angiogenesis, showing promise in countering tissue deterioration and addressing vascular deficits. Moreover, the molecular characterization of EVs through miRNome and proteomic analyses further supports their potential as bio-additives for hydrogel functionalization. This cell-free approach mitigates immune rejection and oncogenic risks, offering innovative therapeutic advantages.


Asunto(s)
Vesículas Extracelulares , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Infarto del Miocardio , Neovascularización Fisiológica , Humanos , Animales , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/trasplante , Metacrilatos/química , Gelatina/química , Inyecciones , Masculino
3.
J Oncol ; 2023: 1011063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733673

RESUMEN

Cancer alters both local and distant tissue by influencing the microenvironment. In this regard, the interplay with the stromal fraction is considered critical as this latter can either foster or hamper the progression of the disease. Accordingly, the modality by which tumors may alter distant niches of stromal cells is still unclear, especially at early stages. In this short report, we attempt to better understand the biology of this cross-talk. In our "autologous stromal experimental setting," we found that remote adipose tissue-derived mesenchymal stem cells (mediastinal AMSC) obtained from patients with lung adenocarcinoma sustain proliferation and clonogenic ability of A549 and human primary lung adenocarcinoma cells similarly to the autologous stromal lung counterpart (LMSC). This effect is not observed in lung benign diseases such as the hamartochondroma. This finding was validated by conditioning benign AMSC with supernatants from LAC for up to 21 days. The new reconditioned media of the stromal fraction so obtained, was able to increase cell proliferation of A549 cells at 14 and 21 days similar to that derived from AMSC of patients with lung adenocarcinoma. The secretome generated by remote AMSC revealed overlapping to the corresponding malignant microenvironment of the autologous local LMSC. Among the plethora of 80 soluble factors analyzed by arrays, a small pool of 5 upregulated molecules including IL1-ß, IL-3, MCP-1, TNF-α, and EGF, was commonly shared by both malignant-like autologous A- and L-MSC derived microenvironments vs those benign. The bioinformatics analysis revealed that these proteins were strictly and functionally interconnected to lung fibrosis and proinflammation and that miR-126, 101, 486, and let-7-g were their main targets. Accordingly, we found that in lung cancer tissues and blood samples from the same set of patients here employed, miR-126 and miR-486 displayed the highest expression levels in tissue and blood, respectively. When the miR-126-3p was silenced in A549 treated with AMSC-derived conditioned media from patients with lung adenocarcinoma, cell proliferation decreased compared to control media.

4.
Biomater Adv ; 145: 213272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586204

RESUMEN

A novel hybrid nanocomposite formed of carboxylated Nano Graphene Oxide (c-NGO), highly densely decorated by monodisperse citrate-coated Au nanoparticles (c-NGO/Au NPs), is synthesized and thoroughly characterized for photothermal applications. A systematic investigation of the role played by the synthetic parameters on the Au NPs decoration of the c-NGO platform is performed, comprehensively studying spectroscopic and morphological characteristics of the achieved nanostructures, thus elucidating their still not univocally explained synthesis mechanism. Remarkably, the Au NPs coating density of the c-NGO sheets is much higher than state-of-the-art systems with analogous composition prepared with different approaches, along with a higher NPs size dispersion. A novel theoretical approach for estimating the average number of NPs per sheet, combining DLS and TEM results, is developed. The assessment of the c-NGO/Au NPs photothermal activity is performed under continuous wave (CW) laser irradiation, at 532 nm and 800 nm, before and after functionalization with PEG-SH. c-NGO/Au NPs composite behaves as efficient photothermal agent, with a light into heat conversion ability higher than that of the single components. The c-NGO/Au NPs compatibility for photothermal therapy is assessed by in vitro cell viability tests, which show no significant effects of c-NGO/Au NPs, as neat and PEGylated, on cell metabolic activity under the investigated conditions. These results demonstrate the great potential held by the prepared hybrid nanocomposite for photothermal conversion technologies, indicating it as particularly promising platform for photothermal ablation of cancer cells.


Asunto(s)
Nanopartículas del Metal , Óxidos , Óxidos/farmacología , Óxidos/química , Oro/farmacología , Oro/química , Línea Celular Tumoral , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Rayos Láser
5.
Biomedicines ; 10(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36289852

RESUMEN

The biological heterogeneity of glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4), the most aggressive type of brain cancer, is a critical hallmark, caused by changes in the genomic mutational asset and influencing clinical progression over time. The understanding and monitoring of the mutational profile is important not only to reveal novel therapeutic targets in this set of patients, but also to ameliorate the clinical stratification of subjects and the prognostic significance. As neurosurgery represents the primary technique to manage GBM, it is of utmost importance to optimize alternative and less invasive methods to monitor the dynamic mutation profile of these patients. Extracellular vesicles (EVs) are included in the liquid biopsy analysis and have emerged as the biological mirror of escaping and surviving mechanisms by many tumors, including glioblastoma. Very few studies have investigated the technical feasibility to detect and analyze the genomic profile by Next-Generation Sequencing (UMI system) in circulating EVs of patients with grade IV glioblastoma. Here, we attempted to characterize and to compare the corresponding matched tissue samples and potential variants with pathogenic significance of the DNA contained in peripheral-blood-derived EVs. The NGS analysis has revealed that patients with grade IV glioblastoma exhibited lesser DNA content in EVs than controls and that, both in EVs and matched cancer tissues, the NF1 gene was consistently mutated in all patients, with the c.2568C>G as the most common pathogenic variant expressed. This study supports the clinical utility of circulating EVs in glioblastoma as an eligible tool for personalized medicine.

6.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076927

RESUMEN

Before entering human clinical studies to evaluate their safety and effectiveness, new drugs and novel medical treatments are subject to extensive animal testing that are expensive and time-consuming. By contrast, advanced technologies enable the development of animal-free models that allow the efficacy of innovative therapies to be studied without sacrificing animals, while providing helpful information and details. We report on the powerful combination of 3D bioprinting (3DB) and photo-thermal therapy (PTT) applications. To this end, we realize a 3DB construct consisting of glioblastoma U87-MG cells in a 3D geometry, incorporating biomimetic keratin-coated gold nanoparticles (Ker-AuNPs) as a photo-thermal agent. The resulting plasmonic 3DB structures exhibit a homogeneous cell distribution throughout the entire volume while promoting the localization of Ker-AuNPs within the cells. A 3D immunofluorescence assay and transmission electron microscopy (TEM) confirm the uniform distribution of fluorescent-labeled Ker-AuNPs in the volume and their capability to enter the cells. Laser-assisted (λ = 532 nm) PTT experiments demonstrate the extraordinary ability of Ker-AuNPs to generate heating, producing the highest temperature rise of about 16 °C in less than 2 min.


Asunto(s)
Glioblastoma , Hipertermia Inducida , Nanopartículas del Metal , Terapia Fototérmica , Materiales Biomiméticos , Glioblastoma/terapia , Oro/química , Humanos , Queratinas/química , Nanopartículas del Metal/química , Terapia Fototérmica/métodos
7.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076963

RESUMEN

Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.


Asunto(s)
Glioblastoma , Neuroblastoma , Glioblastoma/metabolismo , Humanos , Hipoxia/metabolismo , Recurrencia Local de Neoplasia , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Microambiente Tumoral
8.
Brain Sci ; 12(4)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35448031

RESUMEN

Glial neoplasms are a group of diseases with poor prognoses. Not all risk factors are known, and no screening tests are available. Only histology provides certain diagnosis. As already reported, DNA transported by exosomes can be an excellent source of information shared by cells locally or systemically. These vesicles seem to be one of the main mechanisms of tumor remote intercellular signaling used to induce immune deregulation, apoptosis, and both phenotypic and genotypic modifications. In this study, we evaluated the exosomal DNA (exoDNA) concentration in blood samples of patients affected by cerebral glioma and correlated it with histological and radiological characteristics of tumors. From 14 patients with diagnosed primary or recurrent glioma, we obtained MRI imaging data, histological data, and preoperative blood samples that were used to extract circulating exosomal DNA, which we then quantified. Our results demonstrate a relationship between the amount of circulating exosomal DNA and tumor volume, and mitotic activity. In particular, a high concentration of exoDNA was noted in low-grade gliomas. Our results suggest a possible role of exoDNAs in the diagnosis of brain glioma. They could be particularly useful in detecting early recurrent high-grade gliomas and asymptomatic low-grade gliomas.

9.
Nutrients ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458119

RESUMEN

Mechanisms of exercise-induced muscle injury with etiopathogenesis and its consequences have been described; however, the impact of different intensities of exercise on the mechanisms of muscular injury development is not well understood. The aim of this study was to exploit the relationship between platelet activation, oxidative stress and muscular injuries induced by physical exercise in elite football players compared to amateur athletes. Oxidant/antioxidant status, platelet activation and markers of muscle damage were evaluated in 23 elite football players and 23 amateur athletes. Compared to amateurs, elite football players showed lower antioxidant capacity and higher oxidative stress paralleled by increased platelet activation and muscle damage markers. Simple linear regression analysis showed that sNOX2-dp and H2O2, sCD40L and PDGF-bb were associated with a significant increase in muscle damage biomarkers. In vitro studies also showed that plasma obtained from elite athletes increased oxidative stress and muscle damage in human skeletal muscle myoblasts cell line compared to amateurs' plasma, an effect blunted by the NOX2 inhibitor or by the cell treatment with cocoa-derived polyphenols. These results indicate that platelet activation increased muscular injuries induced by oxidative stress. Moreover, NOX2 inhibition and polyphenol extracts treatment positively modulates redox status and reduce exercise-induced muscular injury.


Asunto(s)
Cacao , Polifenoles , Antioxidantes/metabolismo , Antioxidantes/farmacología , Atletas , Biomarcadores , Humanos , Peróxido de Hidrógeno/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Activación Plaquetaria , Polifenoles/metabolismo , Polifenoles/farmacología
10.
Cell Death Discov ; 8(1): 149, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365624

RESUMEN

Cardiac stromal cells (CSCs) embrace multiple phenotypes and are a contributory factor in tissue homeostasis and repair. They can be exploited as therapeutic mediators against cardiac fibrosis and remodeling, but their survival and cardioprotective properties can be decreased by microenvironmental cues. We evaluated the impact of autophagy modulation by different pharmacological/genetic approaches on the viability and phenotype of murine CSCs, which had been subjected to nutrient deprivation or hyperglycemia, in order to mimic relevant stress conditions and risk factors of cardiovascular diseases. Our results show that autophagy is activated in CSCs by nutrient deprivation, and that autophagy induction by trehalose or autophagy-related protein 7 (ATG7)-overexpression can significantly preserve CSC viability. Furthermore, autophagy induction is associated with a higher proportion of primitive, non-activated stem cell antigen 1 (Sca1)-positive cells, and with a reduced fibrotic fraction (positive for the discoidin domain-containing receptor 2, DDR2) in the CSC pool after nutrient deprivation. Hyperglycemia, on the other hand, is associated with reduced autophagic flux in CSCs, and with a significant reduction in primitive Sca1+ cells. Autophagy induction by adenoviral-mediated ATG7-overexpression maintains a cardioprotective, anti-inflammatory and pro-angiogenic paracrine profile of CSCs exposed to hyperglycemia for 1 week. Finally, autophagy induction by ATG7-overexpression during hyperglycemia can significantly preserve cell viability in CSCs, which were subsequently exposed to nutrient deprivation, reducing hyperglycemia-induced impairment of cell resistance to stress. In conclusion, our results show that autophagy stimulation preserves CSC viability and function in response to metabolic stressors, suggesting that it may boost the beneficial functions of CSCs in cardiac repair mechanisms.

11.
BMC Mol Cell Biol ; 23(1): 13, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255831

RESUMEN

BACKGROUND: The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored. RESULTS: We focused our research on the nucleolar function that a specific member of EGFR family, the ErbB3 receptor, plays in glioblastoma, a tumor without effective therapies. Here, Neuregulin 1 mediated proliferative stimuli, promotes ErbB3 relocalization from the nucleolus to the cytoplasm and increases pre-rRNA synthesis. Instead ErbB3 silencing or nucleolar stress reduce cell proliferation and affect cell cycle progression. CONCLUSIONS: These data point to the existence of an ErbB3-mediated non canonical pathway that glioblastoma cells use to control ribosomes synthesis and cell proliferation. These results highlight the potential role for the nucleolar ErbB3 receptor, as a new target in glioblastoma.


Asunto(s)
Glioblastoma , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , Humanos , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transcripción Genética
13.
Genes (Basel) ; 12(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34440329

RESUMEN

microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Células Renales/sangre , Neoplasias Renales/sangre , MicroARNs/sangre , Carcinoma de Células Renales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética
14.
Diagnostics (Basel) ; 11(4)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917572

RESUMEN

Colorectal cancer (CRC) is rapidly increasing representing the second most frequent cause of cancer-related deaths. From a clinical-molecular standpoint the therapeutically management of CRC focuses on main alterations found in the RAS family protein, where single mutations of KRAS are considered both the hallmark and the target of this tumor. Double and concomitant alterations of KRAS are still far to be interpreted as molecular characteristics which could potentially address different and more personalized treatments for patients. Here, we firstly describe the case of two patients at different stages (pT2N0M0 and pT4cN1cM1) but similarly showing a double concurrent mutations G12D and G13D in the exon 2 of the KRAS gene, normally mutually exclusive. We also evaluated genetic testing of dihydropyrimidine dehydrogenase (DPYD) and microsatellite instability (MSI) by real-time PCR and additional molecular mutations by next generation sequencing (NGS) which resulted coherently to the progression of the disease. Accordingly, we reinterpreted and discuss the clinical history of both cases treated as single mutations of KRAS but similarly progressing towards a metastatic asset. We concluded that double mutations of KRAS cannot be interpreted as univocal genomic alterations and that they could severely impact the clinical outcome in CRC, requiring a tighter monitoring of patients throughout the time.

15.
Nanomedicine (Lond) ; 16(2): 121-138, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33426900

RESUMEN

Aim: To realize and characterize a new generation of keratin-coated gold nanoparticles (Ker-AuNPs) as highly efficient photosensitive nanosized therapeutics for plasmonic photothermal (PPT) therapy. Materials & methods: The chemical, physical, morphological and photothermal properties of Ker-AuNPs are investigated using dynamic light scattering, ζ-potential, UV-Visible, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy and high-resolution thermography. In vitro experiments are performed on a human glioblastoma cell line (i.e., U87-MG), using viability assays, transmission electron microscopy, fluorescence microscopy, cytometric analyses and PPT experiments. Results: Experiments confirm the excellent biocompatibility of Ker-AuNPs, their efficient cellular uptake and localized photothermal heating capabilities. Conclusion: The reported structural and functional properties pointed out these Ker-AuNPs as a promising new tool in the field of biocompatible photothermal agents for PPT treatments against cancer-related diseases.


Asunto(s)
Glioblastoma , Nanopartículas del Metal , Biomimética , Glioblastoma/terapia , Oro , Humanos , Queratinas , Terapia Fototérmica
17.
J Mater Chem B ; 8(9): 1823-1840, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067013

RESUMEN

Although significant improvements in cancer treatment have led to a longer survival period, the death rate of patients with solid tumours has not changed during the last decades. Most researchers are currently concentrating on defining the mechanisms of the different resistance pathways activated by tumour cells; meanwhile, the role of limited drug distribution within tumours has been neglected. The application of nanotechnology in medicine offers unexplored opportunities for realizing a new generation of anticancer therapies that can overcome the physical hindrances that characterize solid tumours. Indeed, surface-engineered nanoparticles (NPs) (both organic and inorganic) have been used as powerful tools in cancer therapy. Particularly, Au NPs have been utilized to develop a new drug-free treatment, photo-thermal therapy (PTT), due to their stimuli-responsive properties. PTT combined with immunotherapy represents a major breakthrough in the fight against malignant solid tumours. In this review, we provide a complete overview of the synergistic approaches based on PTT and immunotherapy, considering the selection, design, and functionalization of the NPs and their thermo-optical properties, moving to in vivo studies and finally to clinical trial applications in patients suffering from solid tumours.


Asunto(s)
Inmunoterapia , Nanopartículas/química , Neoplasias/terapia , Humanos , Tamaño de la Partícula , Terapia Fototérmica , Propiedades de Superficie
18.
Exp Dermatol ; 28(9): 1066-1073, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31373041

RESUMEN

Psoriasis is a chronic inflammatory systemic disease caused by deregulation of the interleukin-23/-17 axis that allows the activation of Th17 lymphocytes and the reprogramming of keratinocytes proliferative response, thereby inducing the secretion of cyto-/chemokines and antimicrobial peptides. Beside cell-to-cell contacts and release of cytokines, hormones and second messengers, cells communicate each other through the release of extracellular vesicles containing DNA, RNA, microRNAs and proteins. It has been reported the alteration of extracellular vesicles trafficking in several diseases, but there is scarce evidence of the involvement of extracellular vesicles trafficking in the pathogenesis of psoriasis. The main goal of the study was to characterize the release, the cargo content and the capacity to transfer bioactive molecules of extracellular vesicles produced by keratinocytes following recombinant IL-17A treatment if compared to untreated keratinocytes. A combined approach of standard ultracentrifugation, RNA isolation and real-time RT-PCR techniques was used to characterize extracellular vesicles cargo. Flow cytometry was used to quantitatively and qualitatively analyse extracellular vesicles and to evaluate cell-to-cell extracellular vesicles transfer. We report that the treatment of human keratinocytes with IL-17A significantly modifies the extracellular vesicles cargo and release. Vesicles from IL-17A-treated cells display a specific pattern of mRNA which is undid by IL-17A neutralization. Extracellular vesicles are taken up by acceptor cells irrespective of their content but only those derived from IL-17A-treated cells enable recipient cells to express psoriasis-associated mRNA. The results imply a role of extracellular vesicles in amplifying the pro-inflammatory cascade induced in keratinocyte by pro-psoriatic cytokines.


Asunto(s)
Vesículas Extracelulares/efectos de los fármacos , Interleucina-17/farmacología , Queratinocitos/efectos de los fármacos , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Transformada , Quimiocina CCL20/biosíntesis , Quimiocina CCL20/genética , Quimiocinas CXC/biosíntesis , Quimiocinas CXC/genética , Endocitosis , Vesículas Extracelulares/metabolismo , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-6/biosíntesis , Interleucina-6/genética , Queratinocitos/metabolismo , Tamaño de la Partícula , Psoriasis/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes/farmacología , Succinimidas/metabolismo , beta-Defensinas/biosíntesis , beta-Defensinas/genética
19.
Cell Death Dis ; 10(1): 17, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30622242

RESUMEN

To perform their regulatory functions, microRNAs (miRNAs) must assemble with any of the four mammalian Argonaute (Ago) family of proteins, Ago1-4, into an effector complex known as the RNA-induced silencing complex (RISC). While the mature miRNA guides the RISC complex to its target mRNA, the Ago protein represses mRNA translation. The specific roles of the various Ago members in mediating miRNAs activity, however, haven't been clearly established. In this study, we investigated the contribution of Ago2, the only human Ago protein endowed with nuclease activity, to the function of tumor-suppressor miR-145-5p in breast cancer (BC). We show that miR-145-5p and Ago2 protein are concomitantly downregulated in BC tissues and that restoration of miR-145-5p expression in BC cells leads to Ago2 protein induction through the loosening of Ago2 mRNA translational repression. Functionally, miR-145-5p exerts its inhibitory activity on cell migration only in presence of Ago2, while, upon Ago2 depletion, we observed increased miR-145/Ago1 complex and enhanced cell motility. Profiling by microarray of miR-145-5p target mRNAs, in BC cells depleted or not of Ago2, revealed that miR-145-5p drives Ago2-dependent and -independent activities. Our results highlight that the Ago2 protein in cancer cells strictly dictates miR-145-5p tumor suppressor activity.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Células A549 , Neoplasias de la Mama/patología , Ciclo Celular , Movimiento Celular , Factores Eucarióticos de Iniciación/metabolismo , Femenino , Humanos , Estimación de Kaplan-Meier , Células MCF-7 , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Transfección
20.
Front Aging Neurosci ; 10: 363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459596

RESUMEN

Throughout life, stress stimuli act upon the brain leading to morphological and functional changes in advanced age, when it is likely to develop neurodegenerative disorders. There is an increasing need to unveil the molecular mechanisms underlying aging, in a world where populations are getting older. Egr-1 (early growth response 1), a transcriptional factor involved in cell survival, proliferation and differentiation - with a role also in memory, cognition and synaptic plasticity, can be implicated in the molecular mechanism of the aging process. Moreover, Heme Oxygenase-1a (HO), a 32 kDa heat-shock protein that converts heme to iron, carbon monoxide and biliverdin, is a key enzyme with neuroprotective properties. Several in vitro and in vivo studies reported that HO-1 could regulate the metabolism of oxysterols, oxidation products of cholesterol that include markers of oxidative stress. Recently, a link between Egr-1 and HO-1 has been demonstrated in mouse lung cells exposed to cigarette smoke. In view of these data, we wanted to investigate whether Egr-1 can be implicated also in the oxysterol metabolism during brain aging. Our results show that Egr-1 expression is differently expressed in the cortex and hippocampus of old mice, as well as the oxysterol profile between these two brain areas. In particular, we show that the cortex experiences in an age-dependent fashion increasing levels of the Egr-1 protein, and that these correlate with the level of HO-1 expression and oxysterol abundance. Such a situation was not observed in the hippocampus. These results are further strenghtened by our observations made with Egr-1 KO mice, confirming our hypothesis concerning the influence of Egr-1 on oxysterol production and accumulation via regulation of the expression of HO-1 in the cortex, but not the hippocampus, of old mice. It is important to notice that most of the oxysterols involved in this process are those usually stimulated by oxidative stress, which would then represent the triggering factor for this mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA