Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5445, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114198

RESUMEN

Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Moscas Tse-Tse , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico , Trypanosoma brucei brucei/metabolismo , Moscas Tse-Tse/parasitología
2.
J Pharmacol Toxicol Methods ; 113: 107134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34798285

RESUMEN

Erythropoiesis is a complex physiological process by which erythroid progenitors proliferate and differentiate into nonnucleated red blood cells. Several methods can be used to monitor in vitro the differentiation of erythroid precursors, and hence the toxic effects of drugs, chemicals, or pollutants. One of the most commonly available assay of erythropoiesis is the microscopic observation of differentiated cells after benzidine staining, which forms a blue complex with hemoglobin. However, this method is laborious and does not provide accurate results since it heavily relies on the reader's interpretation. Moreover, benzidine is a carcinogen and a highly reactive molecule which forces the reader to microscopically count differentiated and non-differentiated cells within a short time frame (5 min). Here we have developed a simple, inexpensive, in-vitro spectrophotometric assay to measure erythroid differentiation using K562 cell line as a model. Materials needed included 96-well round-bottomed microplates and a microplate reader. Remarkably, carcinogenic benzidine was replaced by its isomeric tetramethyl derivative, the 3,3', 5,5'- tetramethylbenzidine (TMB), which presents several advantages: it is cheap, not mutagenic and a ready-to-use chromogenic substrate. A small volume (50 µl) of TMB added to the samples forms a blue complex in 15 min, and the reaction can be easily stopped and stabilized by the addition of H2SO4. The yellow precipitate is then solubilized, and the absorbance is measured at 450 nm. In addition, the suitability of the assay to determine the effects of compounds on erythroid differentiation was further tested with known inhibitors (artemisinin derivatives) of K562 differentiation. Overall, the reported methodology permits to measure in an accurate and reproducible manner the K562 differentiation and can be used for medium throughput screenings (MTS) of compounds or environmental toxics with potential erythro-toxicity and ability to inhibit erythroid differentiation.


Asunto(s)
Eritropoyesis , Diferenciación Celular , Humanos , Células K562
3.
Biochem Pharmacol ; 85(10): 1433-40, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23466420

RESUMEN

The aim of this work is the in vitro and ex vivo assessment of the leishmanicidal activity of camptothecin and three analogues used in cancer therapy: topotecan (Hycantim®), gimatecan (ST1481) and the pro-drug irinotecan (Camptosar®) as well as its active metabolite SN-38 against Leishmania infantum. The activity of camptothecin and its derivatives was studied on extracellular L. infantum infrared-emitting promastigotes and on an ex vivo murine model of infected splenocytes with L. infantum fluorescent amastigotes. In situ formation of SDS/KCl precipitable DNA-protein complexes in Leishmania promastigotes indicated that these drugs are DNA topoisomerase IB poisons. The inhibitory potency of camptothecin derivatives on recombinant L. infantum topoisomerase IB was assessed in vitro showing that gimatecan is the most active compound preventing the relaxation of supercoiled DNA at submicromolar concentrations. Cleavage equilibrium assays in Leishmania topoisomerase IB show that gimatecan changes the equilibrium towards cleavage at much lower concentrations than the other camptothecin derivatives and that this effect persists over time. Gimatecan and camptothecin were the most powerful compounds preventing cell growth of free-living L. infantum promastigotes within the same concentration range. All these compounds killed L. infantum splenocyte-infecting amastigotes within the nanomolar range. The amastigote form showed higher sensitivity to topoisomerase IB poisons (with high therapeutic selectivity indexes) than free-living promastigotes. All the compounds assayed poisoned L. infantum DNA topoisomerase IB leading to a strong leishmanicidal effect. Camptothecin derivatives are suitable for reducing the parasitic burden of ex vivo infected splenocytes. The selectivity index of gimatecan makes it a promising drug against this neglected disease.


Asunto(s)
Camptotecina/análogos & derivados , Camptotecina/farmacología , Leishmania infantum/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Profármacos/farmacología , Inhibidores de Topoisomerasa I/farmacología , Tripanocidas/farmacología , Animales , Antineoplásicos/farmacología , Células Cultivadas , ADN-Topoisomerasas de Tipo I/metabolismo , Genes Reporteros , Concentración 50 Inhibidora , Irinotecán , Cinética , Leishmania infantum/enzimología , Leishmania infantum/crecimiento & desarrollo , Proteínas Luminiscentes , Ratones , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Bazo/efectos de los fármacos , Bazo/parasitología , Bazo/patología , Proteína Fluorescente Roja
4.
Mol Biochem Parasitol ; 181(2): 85-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22033378

RESUMEN

L-Arginine is one of the precursor amino acids of polyamine biosynthesis in most living organisms including Leishmania parasites. L-Arginine is enzymatically hydrolyzed by arginase producing L-ornithine and urea. In Leishmania spp. and other trypanosomatids a single gene encoding arginase has been described. The product of this gene is compartmentalized in glycosomes and is the main source of L-ornithine for polyamine synthesis in these parasites. L-Ornithine is substrate of ornithine decarboxylase (ODC) - one of the key enzymes of polyamine biosynthesis and a validated target for therapeutic intervention - producing putrescine, which in turn is converted to spermidine by condensing with an aminopropyl group from decarboxylated S-adenosylmethionine. Unlike trypanosomatids, mammalian hosts have two arginases (arginase I and II), which have close structural and kinetic resemblances, but localize in different subcellular organelles, respond to different stimuli and have different immunological reactivity. Arginase I is a cytosolic enzyme, mostly expressed in the liver as a pivotal component of the urea cycle, providing in addition L-ornithine for polyamine synthesis. In contrast, arginase II localizes inside mitochondria and is metabolically involved in L-proline and L-glutamine biosynthesis. More striking is the role played by L-arginine as substrate for nitric oxide synthase (NOS2) in macrophages, the main route of clearance of many infectious agents including Leishmania and Trypanosoma cruzi. In infected macrophages L-arginine is catalysed by NOS2 or arginase, contributing to host defense or parasite killing, respectively. A balance between NOS2 and arginase activities is a crucial factor in the progression of the Leishmania infection inside macrophages. In response to T-helper type 2 (Th2) cytokines, resident macrophages induce arginase I inhibiting NO production from L-arginine, thereby promoting parasite proliferation. Conversely, the response to T-helper type 1 (Th1) cytokines is linked to NOS2 induction and parasite death. Moreover, induction of any of these enzymes is accompanied by suppression of the other. Specifically, arginase reduces NO synthesis by substrate depletion, and N(ω)-hydroxy-L-arginine, one of the intermediates of NOS2 catalysis, competitively inhibits arginase activity. In spite of abundant data concerning arginases in mammals as well their involvement in parasite killing, there are very few papers regarding the actual role of arginase in the parasite itself. This review is an update on the recent progress in research on leishmanial arginase including the role played by this enzyme in the establishment of infection in macrophages and the immune response of the host. A comparative study of arginases from other kinetoplatids is also discussed.


Asunto(s)
Arginasa/metabolismo , Poliaminas/metabolismo , Trypanosomatina/enzimología , Trypanosomatina/patogenicidad , Animales , Arginasa/inmunología , Arginina/metabolismo , Infecciones por Euglenozoos/tratamiento farmacológico , Infecciones por Euglenozoos/inmunología , Interacciones Huésped-Parásitos , Humanos , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA