Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ann Lab Med ; 44(3): 235-244, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37904578

RESUMEN

Background: Plasma oxalate measurements can be used for the screening and therapeutic monitoring of primary hyperoxaluria. We developed a gas chromatography-mass spectrometry (GC-MS) assay for plasma oxalate measurements with high sensitivity and suitable testing volumes for pediatric populations. Methods: Plasma oxalate was extracted, derivatized, and analyzed by GC-MS. We measured the ion at m/z 261.10 to quantify oxalate and the 13C2-oxalate ion (m/z: 263.15) as the internal standard. Method validation included determination of the linear range, limit of blank, limit of detection, lower limit of quantification, precision, recovery, carryover, interference, and dilution effect. The cut-off value between primary and non-primary hyperoxaluria in a pediatric population was analyzed. Results: The detection limit was 0.78 µmol/L, and the linear range was up to 80.0 µmol/L. The between-day precision was 5.7% at 41.3 µmol/L and 13.1% at 1.6 µmol/L. The carryover was <0.2%. The recovery rate ranged from 90% to 110%. Interference analysis showed that Hb did not interfere with plasma oxalate quantification, whereas intralipids and bilirubin caused false elevation of oxalate concentrations. A cut-off of 13.9 µmol/L showed 63% specificity and 77% sensitivity, whereas a cut-off of 4.15 µmol/L showed 100% specificity and 20% sensitivity. The minimum required sample volume was 250 µL. The detected oxalate concentrations showed interference from instrument conditioning, sample preparation procedures, medications, and various clinical conditions. Conclusions: GC-MS is a sensitive assay for quantifying plasma oxalate and is suitable for pediatric patients. Plasma oxalate concentrations should be interpreted in a clinical context.


Asunto(s)
Hiperoxaluria Primaria , Oxalatos , Humanos , Niño , Cromatografía de Gases y Espectrometría de Masas/métodos , Hiperoxaluria Primaria/diagnóstico
2.
PLoS One ; 16(9): e0257073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495967

RESUMEN

BACKGROUND: Pyridoxine-dependent epilepsy (PDE) is due to biallelic variants in ALDH7A1 (PDE-ALDH7A1). ALDH7A1 encodes α-aminoadipic semialdehyde dehydrogenase in lysine catabolism. We investigated the gamma aminobutyric acid (GABA) metabolism and energy production pathways in human PDE-ALDH7A1 and its knock-out aldh7a1 zebrafish model. METHODS: We measured GABA pathway, and tricarboxylic acid cycle metabolites and electron transport chain activities in patients with PDE-ALDH7A1 and in knock-out aldh7a1 zebrafish. RESULTS: We report results of three patients with PDE-ALDH7A1: low paired complex I+II and complex II+III and individual complex IV activities in muscle biopsy in patient 1 (likely more severe phenotype); significantly elevated CSF glutamate in the GABA pathway and elevated CSF citrate, succinate, isocitrate and α-ketoglutarate in the TCA cycle in patient 3 (likely more severe phenotype); and normal CSF GABA pathway and TCA cycle metabolites on long-term pyridoxine therapy in patient 2 (likely milder phenotype). All GABA pathway metabolites (γ-hydroxybutyrate, glutamine, glutamate, total GABA, succinic semialdehyde) and TCA cycle metabolites (citrate, malate, fumarate, isocitrate, lactate) were significantly low in the homozygous knock-out aldh7a1 zebrafish compared to the wildtype zebrafish. Homozygous knock-out aldh7a1 zebrafish had decreased electron transport chain enzyme activities compared to wildtype zebrafish. DISCUSSION: We report impaired electron transport chain function, accumulation of glutamate in the central nervous system and TCA cycle dysfunction in human PDE-ALDH7A1 and abnormal GABA pathway, TCA cycle and electron transport chain in knock-out aldh7a1 zebrafish. Central nervous system glutamate toxicity and impaired energy production may play important roles in the disease neuropathogenesis and severity in human PDE-ALDH7A1.


Asunto(s)
Aldehído Deshidrogenasa/genética , Alelos , Metabolismo Energético , Epilepsia/metabolismo , Proteínas de Pez Cebra/genética , Animales , Ciclo del Ácido Cítrico , ADN Mitocondrial/genética , Transporte de Electrón , Embrión no Mamífero , Metabolismo Energético/genética , Pez Cebra/embriología
3.
Hum Mol Genet ; 28(2): 290-306, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30304514

RESUMEN

LonP1 is crucial for maintaining mitochondrial proteostasis and mitigating cell stress. We identified a novel homozygous missense LONP1 variant, c.2282 C > T, (p.Pro761Leu), by whole-exome and Sanger sequencing in two siblings born to healthy consanguineous parents. Both siblings presented with stepwise regression during infancy, profound hypotonia and muscle weakness, severe intellectual disability and progressive cerebellar atrophy on brain imaging. Muscle biopsy revealed the absence of ragged-red fibers, however, scattered cytochrome c oxidase-negative staining and electron dense mitochondrial inclusions were observed. Primary cultured fibroblasts from the siblings showed normal levels of mtDNA and mitochondrial transcripts, and normal activities of oxidative phosphorylation complexes I through V. Interestingly, fibroblasts of both siblings showed glucose-repressed oxygen consumption compared to their mother, whereas galactose and palmitic acid utilization were similar. Notably, the siblings' fibroblasts had reduced pyruvate dehydrogenase (PDH) activity and elevated intracellular lactate:pyruvate ratios, whereas plasma ratios were normal. We demonstrated that in the siblings' fibroblasts, PDH dysfunction was caused by increased levels of the phosphorylated E1α subunit of PDH, which inhibits enzyme activity. Blocking E1α phosphorylation activated PDH and reduced intracellular lactate concentrations. In addition, overexpressing wild-type LonP1 in the siblings' fibroblasts down-regulated phosphoE1α. Furthermore, in vitro studies demonstrated that purified LonP1-P761L failed to degrade phosphorylated E1α, in contrast to wild-type LonP1. We propose a novel mechanism whereby homozygous expression of the LonP1-P761L variant leads to PDH deficiency and energy metabolism dysfunction, which promotes severe neurologic impairment and neurodegeneration.


Asunto(s)
Proteasas ATP-Dependientes/genética , Enfermedades Cerebelosas/genética , Proteínas Mitocondriales/genética , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Alelos , Enfermedades Cerebelosas/enzimología , ADN Mitocondrial/metabolismo , Homocigoto , Humanos , Recién Nacido , Lactatos/metabolismo , Masculino , Enfermedades Neurodegenerativas/enzimología , Linaje , Fosforilación , Subunidades de Proteína/metabolismo , Proteolisis , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/patología
4.
Biochem J ; 441(1): 275-83, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21880015

RESUMEN

LRPPRC (leucine-rich pentatricopeptide repeat-containing) has been shown to be essential for the maturation of COX (cytochrome c oxidase), possibly by stabilizing RNA transcripts of COXI, COXII and COXIII genes encoded in mtDNA (mitochondrial DNA). We established a mouse 'gene-trap' model using ES cells (embryonic stem cells) in which the C-terminus of LRPPRC has been replaced with a ß-geo construct. Mice homozygous for this modification were found to be subject to embryonic lethality, with death before 12.5 dpc (days post-coitum). Biochemical analysis of MEFs (mouse embryonic fibroblasts) isolated from homozygous mutants showed a major decrease in COX activity, with slight reductions in other respiratory chain complexes with mtDNA encoded components. Constructs of LRPPRC containing different numbers of PPRs (pentatricopeptide repeats) were expressed as recombinant proteins and tested for their ability to bind to the COXI mRNA transcript. Full binding required the first 19 PPR motifs. A specific segment of COXI mRNA was identified as the binding target for LRPPRC, encoded by mouse mtDNA nucleotides 5961-6020. These data strongly suggest that LRPPRC is involved in the maturation of COX, and is involved in stabilizing of mitochondrial mRNAs encoding COX transcripts.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , ARN/metabolismo , Animales , Línea Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Complejo IV de Transporte de Electrones/clasificación , Complejo IV de Transporte de Electrones/genética , Embrión de Mamíferos , Células Madre Embrionarias , Fibroblastos/citología , Fibroblastos/metabolismo , Genotipo , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Neoplasias/genética , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , beta-Galactosidasa/metabolismo
5.
Cancer Cell ; 20(5): 674-88, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22094260

RESUMEN

To identify FDA-approved agents targeting leukemic cells, we performed a chemical screen on two human leukemic cell lines and identified the antimicrobial tigecycline. A genome-wide screen in yeast identified mitochondrial translation inhibition as the mechanism of tigecycline-mediated lethality. Tigecycline selectively killed leukemia stem and progenitor cells compared to their normal counterparts and also showed antileukemic activity in mouse models of human leukemia. ShRNA-mediated knockdown of EF-Tu mitochondrial translation factor in leukemic cells reproduced the antileukemia activity of tigecycline. These effects were derivative of mitochondrial biogenesis that, together with an increased basal oxygen consumption, proved to be enhanced in AML versus normal hematopoietic cells and were also important for their difference in tigecycline sensitivity.


Asunto(s)
Antineoplásicos/farmacología , Genes Mitocondriales , Leucemia/tratamiento farmacológico , Minociclina/análogos & derivados , Mitocondrias/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Línea Celular Tumoral , Humanos , Ratones , Minociclina/farmacología , Proteínas Mitocondriales/genética , Factor Tu de Elongación Peptídica/genética , ARN Interferente Pequeño , Saccharomyces cerevisiae/efectos de los fármacos , Tigeciclina
6.
Am J Hum Genet ; 89(4): 486-95, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21944046

RESUMEN

Severe combined deficiency of the 2-oxoacid dehydrogenases, associated with a defect in lipoate synthesis and accompanied by defects in complexes I, II, and III of the mitochondrial respiratory chain, is a rare autosomal recessive syndrome with no obvious causative gene defect. A candidate locus for this syndrome was mapped to chromosomal region 2p14 by microcell-mediated chromosome transfer in two unrelated families. Unexpectedly, analysis of genes in this area identified mutations in two different genes, both of which are involved in [Fe-S] cluster biogenesis. A homozygous missense mutation, c.545G>A, near the splice donor of exon 6 in NFU1 predicting a p.Arg182Gln substitution was found in one of the families. The mutation results in abnormal mRNA splicing of exon 6, and no mature protein could be detected in fibroblast mitochondria. A single base-pair duplication c.123dupA was identified in BOLA3 in the second family, causing a frame shift that produces a premature stop codon (p.Glu42Argfs(∗)13). Transduction of fibroblast lines with retroviral vectors expressing the mitochondrial, but not the cytosolic isoform of NFU1 and with isoform 1, but not isoform 2 of BOLA3 restored both respiratory chain function and oxoacid dehydrogenase complexes. NFU1 was previously proposed to be an alternative scaffold to ISCU for the biogenesis of [Fe-S] centers in mitochondria, and the function of BOLA3 was previously unknown. Our results demonstrate that both play essential roles in the production of [Fe-S] centers for the normal maturation of lipoate-containing 2-oxoacid dehydrogenases, and for the assembly of the respiratory chain complexes.


Asunto(s)
Proteínas Portadoras/genética , Mutación , Oxidorreductasas/metabolismo , Proteínas/genética , Citosol/metabolismo , Transporte de Electrón , Exones , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Homocigoto , Humanos , Proteínas Hierro-Azufre/metabolismo , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales , Mutación Missense
7.
Biochem Biophys Res Commun ; 399(3): 331-5, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20637729

RESUMEN

Mitochondrial dysfunction is involved in the underlying pathology of Parkinson's Disease (PD). PINK1 deficiency, which gives rise to familial early-onset PD, is associated with this dysfunction as well as increased oxidative stress. We have established primary fibroblast cell lines from two patients with PD who carry mutations in the PINK1 gene. The phosphorylation of Akt is abrogated in the presence of oxidative stressors in the complete absence of PINK1 suggesting enhanced apoptotic signalling. We have found an imbalance between the production of reactive oxygen species where the capacity of the cell to remove these toxins by anti-oxidative enzymes is greatly reduced. The expression levels of the anti-oxidant enzymes glutathione peroxidase-1, MnSOD, peroxiredoxin-3 and thioredoxin-2 were diminished. The p66(Shc) adaptor protein has recently been identified to become activated by oxidative stress by phosphorylation at residue Ser36 which then translocates to the mitochondrial inner membrane space. The phosphorylation of p66(Shc) at Ser36 is significantly increased in PINK1 deficient cell lines under normal tissue culture conditions, further still in the presence of compounds which elicit oxidative stress. The stable transfection of PINK1 in the fibroblasts which display the null phenotype ameliorates the hyper-phosphorylation of p66(Shc).


Asunto(s)
Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Línea Celular , Fibroblastos/metabolismo , Glutatión Peroxidasa/metabolismo , Humanos , Peroxirredoxinas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Serina/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Superóxido Dismutasa/metabolismo , Tiorredoxinas/metabolismo , Glutatión Peroxidasa GPX1
8.
Clin Chem ; 51(11): 2110-6, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16141288

RESUMEN

BACKGROUND: Mitochondrial respiratory chain complex (RCC) disorders may occur as commonly as 1 in 8500 individuals. Because of the great variability of phenotypic presentations, measurement of individual RCC enzyme activities is a crucial diagnostic process. Current assay methods are time-consuming and labor-intensive and thus constitute a major impediment to clinical practice. A method with a faster turnaround time would therefore be beneficial. METHOD: We developed an automated spectrophotometric method for measuring the respiratory chain enzyme activities of complex I, complex II + III, and complex IV with the Hitachi 912, an automated spectrophotometer. Mitochondrial citrate synthase was also determined for normalization of the RCC activities. RESULTS: A blinded method comparison with samples from an external testing center yielded a 91% concordance of interpretations. Mean intraassay imprecision (as CV; n = 20) in a single batch analysis of each RCC was 5.9%. Interassay imprecision, evaluated on 2 samples harvested and analyzed 3 times each, gave mean CVs of 10%-18%. CONCLUSIONS: With this automated method, a panel of RCC enzyme activities can be determined in <2 h. In addition, an immunoblot assay using monoclonal antibodies against specific subunits of RCC enzyme complexes can be informative in cases of borderline enzyme activity. Our results suggest that in vitro diagnosis of RCC enzyme deficiencies in skin fibroblasts is an effective alternative to invasive muscle biopsy.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/enzimología , Piel/enzimología , Autoanálisis , Western Blotting , Células Cultivadas , Humanos , Valores de Referencia , Piel/citología , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA