Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Am Chem Soc ; 146(1): 552-566, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38146212

RESUMEN

The sodium, potassium, and chloride cotransporter 1 (NKCC1) plays a key role in tightly regulating ion shuttling across cell membranes. Lately, its aberrant expression and function have been linked to numerous neurological disorders and cancers, making it a novel and highly promising pharmacological target for therapeutic interventions. A better understanding of how NKCC1 dynamically operates would therefore have broad implications for ongoing efforts toward its exploitation as a therapeutic target through its modulation. Based on recent structural data on NKCC1, we reveal conformational motions that are key to its function. Using extensive deep-learning-guided atomistic simulations of NKCC1 models embedded into the membrane, we captured complex dynamical transitions between alternate open conformations of the inner and outer vestibules of the cotransporter and demonstrated that NKCC1 has water-permeable states. We found that these previously undefined conformational transitions occur via a rocking-bundle mechanism characterized by the cooperative angular motion of transmembrane helices (TM) 4 and 9, with the contribution of the extracellular tip of TM 10. We found these motions to be critical in modulating ion transportation and in regulating NKCC1's water transporting capabilities. Specifically, we identified interhelical dynamical contacts between TM 10 and TM 6, which we functionally validated through mutagenesis experiments of 4 new targeted NKCC1 mutants. We conclude showing that those 4 residues are highly conserved in most Na+-dependent cation chloride cotransporters (CCCs), which highlights their critical mechanistic implications, opening the way to new strategies for NKCC1's function modulation and thus to potential drug action on selected CCCs.


Asunto(s)
Cloruros , Agua , Miembro 2 de la Familia de Transportadores de Soluto 12/química , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Cloruros/metabolismo , Mutagénesis , Cationes/metabolismo , Agua/metabolismo
3.
Mol Ther ; 29(10): 3072-3092, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34058387

RESUMEN

A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.


Asunto(s)
Síndrome de Down/terapia , Terapia Genética/métodos , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Animales , Cloruros/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/psicología , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Ratones , Neuronas/metabolismo , Interferencia de ARN
4.
Nat Commun ; 11(1): 6194, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273479

RESUMEN

Genetic mosaicism, a condition in which an organ includes cells with different genotypes, is frequently present in monogenic diseases of the central nervous system caused by the random inactivation of the X-chromosome, in the case of X-linked pathologies, or by somatic mutations affecting a subset of neurons. The comprehension of the mechanisms of these diseases and of the cell-autonomous effects of specific mutations requires the generation of sparse mosaic models, in which the genotype of each neuron is univocally identified by the expression of a fluorescent protein in vivo. Here, we show a dual-color reporter system that, when expressed in a floxed mouse line for a target gene, leads to the creation of mosaics with tunable degree. We demonstrate the generation of a knockout mosaic of the autism/epilepsy related gene PTEN in which the genotype of each neuron is reliably identified, and the neuronal phenotype is accurately characterized by two-photon microscopy.


Asunto(s)
Colorantes Fluorescentes/química , Genes Reporteros , Integrasas/metabolismo , Mosaicismo , Trastornos del Neurodesarrollo/genética , Potenciales de Acción , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Electroencefalografía , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Trastornos del Neurodesarrollo/fisiopatología , Fosfohidrolasa PTEN/metabolismo , Tamoxifeno/farmacología
5.
Cell Rep ; 31(2): 107519, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294442

RESUMEN

Studies in cultured neurons have established that axon specification instructs neuronal polarization and is necessary for dendrite development. However, dendrite formation in vivo occurs when axon formation is prevented. The mechanisms promoting dendrite development remain elusive. We find that apical dendrite development is directed by a localized cyclic guanosine monophosphate (cGMP)-synthesizing complex. We show that the scaffolding protein Scribble associates with cGMP-synthesizing enzymes soluble-guanylate-cyclase (sGC) and neuronal nitric oxide synthase (nNOS). The Scribble scaffold is preferentially localized to and mediates cGMP increase in dendrites. These events are regulated by kinesin KifC2. Knockdown of Scribble, sGC-ß1, or KifC2 or disrupting their associations prevents cGMP increase in dendrites and causes severe defects in apical dendrite development. Local cGMP elevation or sGC expression rescues the effects of Scribble knockdown on dendrite development, indicating that Scribble is an upstream regulator of cGMP. During neuronal polarization, dendrite development is directed by the Scribble scaffold that might link extracellular cues to localized cGMP increase.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , GMP Cíclico/farmacología , Dendritas/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Femenino , Guanilato Ciclasa/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Andamios del Tejido/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología
6.
Neurobiol Dis ; 91: 10-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26875662

RESUMEN

Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.


Asunto(s)
Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Convulsiones Febriles/patología , Simportadores/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Susceptibilidad a Enfermedades/metabolismo , Epilepsia/fisiopatología , Trastornos de la Memoria/metabolismo , Neurogénesis/fisiología , Células Piramidales/metabolismo , Ratas Sprague-Dawley , Convulsiones Febriles/metabolismo , Convulsiones Febriles/fisiopatología , Cotransportadores de K Cl
7.
J Neurosci ; 35(38): 13148-59, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400944

RESUMEN

Synapsin III (SynIII) is a neuron-specific phosphoprotein that plays a unique role in neuronal development. SynIII is phosphorylated by cAMP-dependent protein kinase (PKA) at a highly conserved phosphorylation site and by cyclin-dependent kinase-5 (Cdk5) at a newly described site. Although SynIII is known to be involved in axon elongation in vitro, the role of its phosphorylation by PKA and Cdk5 in the modulation of this process is unknown. We expressed either wild-type (WT) or phosphorylation-site mutants of SynIII in primary SynIII knock-out (KO) mouse neurons at early stages of in vitro development. Whereas the neurite elongation phenotype of SynIII KO neurons was fully rescued by the expression of WT SynIII, the expression of nonphosphorylatable and pseudo-phosphorylated PKA mutants was ineffective. Also, the nonphosphorylatable Cdk5 mutant was unable to rescue the neurite elongation phenotype of SynIII KO neurons. By contrast, the pseudo-phosphorylated mutant rescued the delay in neuronal maturation and axonal elongation, revealing a Cdk5-dependent regulation of SynIII function. Interestingly, SynIII KO neurons also exhibited decreased survival that was fully rescued by the expression of WT SynIII, but not by its phosphorylation mutants, and was associated with increased activated caspase3 and altered tropomyosin receptor kinase B isoform expression. These results indicate that PKA and Cdk5 phosphorylation is required for the physiological action of SynIII on axon specification and neurite outgrowth and that the expression of a functional SynIII is crucial for cell survival. Significance statement: Synapsin III is an atypical member of the synapsin family of synaptic vesicle-associated phosphoproteins that is precociously expressed in neurons and is downregulated afterward. Although experimental evidence suggests a specific role for Synapsin III in neuronal development, the molecular mechanisms are still largely unknown. We found that Synapsin III plays a central role in early stages of neuronal development involving neuronal survival, polarization, and neuritic growth and that these effects are dependent on phosphorylation by cAMP-dependent protein kinase and cyclin-dependent protein kinase-5. These results explain the recently described neurodevelopmental defects in the migration and orientation of Synapsin III-depleted cortical neurons and support the potential association of Synapsin III with neurodevelopmental disorders such as schizophrenia.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Sinapsinas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Quinasa 5 Dependiente de la Ciclina/genética , Embrión de Mamíferos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sinapsinas/genética , Tubulina (Proteína)/metabolismo
8.
Integr Biol (Camb) ; 7(2): 184-97, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25515929

RESUMEN

The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/citología , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología , Red Nerviosa/fisiología , Neuroblastoma/patología , Neuronas/citología , Neuronas/fisiología , Porosidad , Silicio , Propiedades de Superficie
9.
Front Cell Neurosci ; 8: 119, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904277

RESUMEN

During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.

10.
Nat Commun ; 4: 1800, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23653212

RESUMEN

γ-Aminobutyric acid is the principal inhibitory neurotransmitter in adults, acting through ionotropic chloride-permeable GABAA receptors (GABAARs), and metabotropic GABABRs coupled to calcium or potassium channels, and cyclic AMP signalling. During early development, γ-aminobutyric acid is the main neurotransmitter and is not hyperpolarizing, as GABAAR activation is depolarizing while GABABRs lack coupling to potassium channels. Despite extensive knowledge on GABAARs as key factors in neuronal development, the role of GABABRs remains unclear. Here we address GABABR function during rat cortical development by in utero knockdown (short interfering RNA) of GABABR in pyramidal-neuron progenitors. GABABR short interfering RNA impairs neuronal migration and axon/dendrite morphological maturation by disrupting cyclic AMP signalling. Furthermore, GABABR activation reduces cyclic AMP-dependent phosphorylation of LKB1, a kinase involved in neuronal polarization, and rescues LKB1 overexpression-induced defects in cortical development. Thus, non-hyperpolarizing activation of GABABRs during development promotes neuronal migration and morphological maturation by cyclic AMP/LKB1 signalling.


Asunto(s)
Movimiento Celular , AMP Cíclico/metabolismo , Neuritas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de GABA-B/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Western Blotting , Movimiento Celular/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Glutamatos/farmacología , Técnicas In Vitro , Datos de Secuencia Molecular , Neuritas/efectos de los fármacos , Fenotipo , Subunidades de Proteína/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo
11.
Neuron ; 71(3): 433-46, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835341

RESUMEN

Semaphorin 3A (Sema3A) is a secreted factor known to guide axon/dendrite growth and neuronal migration. We found that it also acts as a polarizing factor for axon/dendrite development in cultured hippocampal neurons. Exposure of the undifferentiated neurite to localized Sema3A suppressed its differentiation into axon and promoted dendrite formation, resulting in axon formation away from the Sema3A source, and bath application of Sema3A to polarized neurons promoted dendrite growth but suppressed axon growth. Fluorescence resonance energy transfer (FRET) imaging showed that Sema3A elevated the cGMP but reduced cAMP and protein kinase A (PKA) activity, and its axon suppression is attributed to the downregulation of PKA-dependent phosphorylation of axon determinants LKB1 and GSK-3ß. Downregulating Sema3A signaling in rat embryonic cortical progenitors via in utero electroporation of siRNAs against the Sema3A receptor neuropilin-1 also resulted in polarization defects in vivo. Thus, Sema3A regulates the earliest step of neuronal morphogenesis by polarizing axon/dendrite formation.


Asunto(s)
Axones/fisiología , Polaridad Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Dendritas/fisiología , Hipocampo/crecimiento & desarrollo , Neuronas/fisiología , Semaforina-3A/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Axones/efectos de los fármacos , Movimiento Celular/fisiología , Polaridad Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Dendritas/efectos de los fármacos , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropilina-1/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Semaforina-3A/antagonistas & inhibidores , Semaforina-3A/farmacología , Transducción de Señal/fisiología
12.
Science ; 327(5965): 547-52, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20110498

RESUMEN

Cytosolic cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) often mediate antagonistic cellular actions of extracellular factors, from the regulation of ion channels to cell volume control and axon guidance. We found that localized cAMP and cGMP activities in undifferentiated neurites of cultured hippocampal neurons promote and suppress axon formation, respectively, and exert opposite effects on dendrite formation. Fluorescence resonance energy transfer imaging showed that alterations of the amount of cAMP resulted in opposite changes in the amount of cGMP, and vice versa, through the activation of specific phosphodiesterases and protein kinases. Local elevation of cAMP in one neurite resulted in cAMP reduction in all other neurites of the same neuron. Thus, local and long-range reciprocal regulation of cAMP and cGMP together ensures coordinated development of one axon and multiple dendrites.


Asunto(s)
Axones/fisiología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dendritas/fisiología , Hipocampo/citología , Neuronas/fisiología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Axones/metabolismo , Diferenciación Celular , Línea Celular , Polaridad Celular , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/metabolismo , Inhibidores Enzimáticos/farmacología , Transferencia Resonante de Energía de Fluorescencia , Guanilato Ciclasa/antagonistas & inhibidores , Guanilato Ciclasa/metabolismo , Humanos , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/citología , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Fosforilación , Ratas , Transducción de Señal , Transfección
13.
Cell ; 129(3): 565-77, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17482549

RESUMEN

Axon/dendrite differentiation is a critical step in neuronal development. In cultured hippocampal neurons, the accumulation of LKB1 and STRAD, two interacting proteins critical for establishing epithelial polarity, in an undifferentiated neurite correlates with its subsequent axon differentiation. Downregulation of either LKB1 or STRAD by siRNAs prevented axon differentiation, and overexpression of these proteins led to multiple axon formation. Furthermore, interaction of STRAD with LKB1 promoted LKB1 phosphorylation at a PKA site S431 and elevated the LKB1 level, and overexpressing LKB1 with a serine-to-alanine mutation at S431 (LKB1(S431A)) prevented axon differentiation. In developing cortical neurons in vivo, downregulation of LKB1 or overexpression of LKB1(S431A) also abolished axon formation. Finally, local exposure of the undifferentiated neurite to brain-derived neurotrophic factor or dibutyryl-cAMP promoted axon differentiation in a manner that depended on PKA-dependent LKB1 phosphorylation. Thus local LKB1/STRAD accumulation and PKA-dependent LKB1 phosphorylation represents an early signal for axon initiation.


Asunto(s)
Axones/metabolismo , Proteínas Portadoras/metabolismo , Polaridad Celular , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos/citología , Humanos , Neuritas/metabolismo , Neuronas/metabolismo , Fosforilación , Ratas , Transducción de Señal
14.
J Neurosci ; 23(18): 7012-20, 2003 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12904462

RESUMEN

Normal visual experience during postnatal development is necessary for the maturation of visual cortical circuits and acts through molecular mechanisms that are still poorly understood. Recently, it has been shown that ERK (extracellular signal-regulated kinase) 1/2, protein kinase A (PKA), and CREB (cAMP response element-binding protein) are crucial factors for experience-dependent development of the visual cortex, but very little is known about the role of visual experience in their activation. Here, we show that visual stimulation after a brief period of dark rearing caused a transient ERK activation in the visual cortex. Visually induced ERK activation occurred primarily in excitatory neurons of layers II-III and VI and was prevented by binocular lid suture. ERK phosphorylation was strongly reduced by cortical infusion with the cAMP-PKA inhibitor Rp-8-Cl-cAMPS, thus establishing a link between PKA and ERK activation. To analyze the downstream consequences of ERK and PKA signaling, we studied the action of visual stimulation on transcription of genes controlled by CREB in transgenic mice carrying the LacZ reporter gene under the control of the CRE (cAMP response element) promoter. Visual stimulation triggered a prolonged episode of CRE-mediated gene expression in the visual cortex that was suppressed by infusion with the ERK inhibitor U0126. Cortical administration of Rp-8-Cl-cAMPS attenuated the experience-dependent activation of CRE-mediated gene transcription. These results show that ERK phosphorylation in visual cortical neurons represents a molecular readout of patterned visual stimuli and that visual activation of ERK involves the cAMP-PKA system. Finally, because CRE-mediated gene expression was totally dependent on ERK activation, we suggest that PKA action on CRE-mediated gene expression is mediated by ERK.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/análogos & derivados , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Elementos de Respuesta/fisiología , Visión Ocular/fisiología , Corteza Visual/metabolismo , Anestésicos Intravenosos/farmacología , Animales , AMP Cíclico/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Oscuridad , Vías de Administración de Medicamentos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Luz , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Estimulación Luminosa , Ratas , Ratas Long-Evans , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Corteza Visual/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA