Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Physiol Behav ; 273: 114415, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000530

RESUMEN

There is a body of evidence to suggest that chronic stress modulates neurochemical homeostasis, alters neuronal structure, inhibits neurogenesis and contributes to development of mental disorders. Chronic stress-associated mental disorders present common symptoms of cognitive impairment and depression with complex disease mechanisms. P-coumaric acid (p-CA), a natural phenolic compound, is widely distributed in vegetables, cereals and fruits. p-CA exhibits a wide range of health-related effects, including anti-oxidative-stress, anti-mutagenesis, anti-inflammation and anti-cancer activities. The current study aims to evaluate the therapeutic potential of p-CA against stress-associated mental disorders. We assessed the effect of p-CA on cognitive deficits and depression-like behavior in mice exposed to chronic restraint stress (CRS); we used network pharmacology, biochemical and molecular biological approaches to elucidate the underlying molecular mechanisms. CRS exposure caused memory impairments and depression-like behavior in mice; p-CA administration attenuated these CRS-induced memory deficits and depression-like behavior. Network pharmacology analysis demonstrated that p-CA was possibly involved in multiple targets and a variety of signaling pathways. Among them, the protein kinase A (PKA) - cAMP-response element binding protein (CREB) - brain derived neurotrophic factor (BDNF) signaling pathway was predominant and further characterized. The levels of PKA, phosphorylated CREB (pCREB) and BDNF were significantly lowered in the hippocampus of CRS mice, suggesting disruption of the PKA-CREB-BDNF signaling pathway; p-CA treatment restored the signaling pathway. Furthermore, CRS upregulated expression of proinflammatory cytokines in hippocampus, while p-CA reversed the CRS-induced effects. Our findings suggest that p-CA will offer therapeutic benefit to patients with stress-associated mental disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Transducción de Señal , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico
2.
Curr Eye Res ; 47(10): 1450-1462, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947018

RESUMEN

PURPOSE: Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD decoction and to elucidate the underlying mechanisms. METHODS: We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction." The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays. RESULTS: We screened out 268 active ingredients in anti-AMD decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL-6, TNF, VEGFA and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells. CONCLUSIONS: The data suggests that anti-AMD decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.


Asunto(s)
Medicamentos Herbarios Chinos , Degeneración Macular , Anciano , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Interleucina-6 , Luteolina , Degeneración Macular/tratamiento farmacológico , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Quercetina , Pigmentos Retinianos
3.
Curr Med Chem ; 29(40): 6141-6158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546762

RESUMEN

Age-related macular degeneration (AMD) is a complex disease that mainly affects people over 50 years of age. Even though management of the vascularisation associated with the "wet" form of AMD is effective using anti-VEGF drugs, there is currently no treatment for the "dry" form of AMD. Given this, it is imperative to develop methods for disease prevention and treatment. For this review, we searched scientific articles via PubMed and Google Scholar, and considered the impact of nutrients, specific dietary patterns, and probiotics on the incidence and progression of AMD. Many studies revealed that regular consumption of foods that contain ω-3 fatty acids is associated with a lower risk for late AMD. Particular dietary patterns, such as the Mediterranean diet that contains ω-3 FAs-rich foods (nuts, olive oil, and fish), seem to be protective against AMD progression compared to Western diets that are rich in fats and carbohydrates. Furthermore, randomized controlled trials that investigated the role of nutrient supplementation in AMD have shown that treatment with antioxidants, such as lutein/zeaxanthin, zinc, and carotenoids, may be effective against AMD progression. More recent studies have investigated the association of the antioxidant properties of gut bacteria, such as Bacteroides and Eysipelotrichi, with lower AMD risk in individuals whose microbiota is enriched with them. These are promising fields of research that may yield the capacity to improve the quality of life for millions of people, allowing them to live with a clear vision for longer and avoiding the high cost of vision-saving surgery.


Asunto(s)
Ácidos Grasos Omega-3 , Degeneración Macular , Probióticos , Antioxidantes/uso terapéutico , Carbohidratos , Carotenoides/uso terapéutico , Suplementos Dietéticos , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Luteína/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/prevención & control , Nutrientes , Aceite de Oliva/uso terapéutico , Probióticos/uso terapéutico , Calidad de Vida , Zeaxantinas/uso terapéutico , Zinc
4.
Contrast Media Mol Imaging ; 2021: 6010362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992508

RESUMEN

Alzheimer's disease (AD) is a progressive neurological degenerative illness with a hidden onset. Its pathogenesis is complicated, although with molecular biology research on cancer and targeted research on pathogenic mechanisms, good progress has not yet been made. Therefore, this work built a multifactor-driven neuronal apoptosis dysfunction module for the purpose of probing its underlying pathogenic mechanisms. We performed differential expression analysis, coexpression analysis, enrichment analysis, and hypergeometric tests to calculate the underlying regulatory effects of multifactors on the modules by the way of the whole gene expression profile of AD and identify a series of ncRNA (miR-320a) and TF (NFKB1). Additionally, we screened 10 modules corresponding to the Hub gene, which tend to regulate the physiological progress of inflammation, regulation of autophagy, cerebral cortex neuron differentiation, glial cell apoptotic, and so on. Meanwhile, Alzheimer's disease is triggered by signaling pathways such as the MPK signaling pathway. In this study, a dysfunction module is utilized to verify that miR-590-3 and SP1 motility factors can regulate neurons in Alzheimer's disease through the MPK signaling pathway, not only providing new insights into the pathogenesis of Alzheimer's disease but also laying a solid theoretical foundation for the biologists to further cure Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apoptosis/genética , Humanos , MicroARNs/genética , Transducción de Señal/genética , Factor de Transcripción Sp1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA