Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
ChemSusChem ; : e202400027, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38588020

RESUMEN

An in-depth investigation was conducted on a promising composite material (BiVO4/TiO2), focusing on its potential toxicity, photoinduced catalytic properties, as well as its antibiofilm and antimicrobial functionalities. The preparation process involved the synthesis of 2D-TiO2 using the lyophilization method, which was subsequently functionalized with sphere-like BiVO4. Finally, we developed BiVO4/TiO2 S-scheme heterojunctions which can greatly promote the separation of electron-hole pairs to achieve high photocatalytic performance. The evaluation of concentration- and time-dependent viability inhibition was performed on human lung carcinoma epithelial A549 cells. This assessment included the estimation of glutathione levels and mitochondrial dehydrogenase activity. Significantly, the BiVO4/TiO2 composite demonstrated minimal toxicity towards A549 cells. Impressively, the BiVO4/TiO2 composite exhibited notable photocatalytic performance in the degradation of rhodamine B (k =0.135 min-1) and phenol (k = 0.016 min-1). In terms of photoinduced antimicrobial performance, the composite effectively inactivated both gram-negative E. coli and gram-positive E. faecalis bacteria upon 60-min of UV-A light exposure, resulting in a significant log6(log10CFU/mL) reduction in bacterial count. These promising results can be attributed to the unique 2D morphology of TiO2 modified by sphere-like BiVO4, leading to an increased generation of (intracellular)hydroxyl radicals, which plays a crucial role in treatments of both organic pollutants and bacteria.

2.
Arch Toxicol ; 97(11): 2943-2954, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37639014

RESUMEN

Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.


Asunto(s)
Acetaminofén , Aminofenoles , Humanos , Aminofenoles/toxicidad , Acetaminofén/toxicidad , Cisteína , Riñón , Glutatión
3.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37390508

RESUMEN

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad , 17-Hidroxiesteroide Deshidrogenasas , Encéfalo/metabolismo , Inhibidores Enzimáticos/química
4.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298087

RESUMEN

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Monoaminooxidasa/metabolismo , Diseño de Fármacos , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad
5.
Emerg Microbes Infect ; 12(1): e2146536, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36357372

RESUMEN

Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Bordetella pertussis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fenotipo , Macrófagos/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Int J Nanomedicine ; 17: 4211-4225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124012

RESUMEN

Purpose: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. Methods: We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0-100 µg.mL-1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. Results: We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. Conclusion: We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.


Asunto(s)
Nanopartículas , Albúmina Sérica Bovina , Células A549 , Glutatión , Humanos , Pulmón , Nanopartículas del Metal , Nanopartículas/química , Oxidorreductasas , Cloruro de Sodio , Titanio , Agua
7.
Food Chem Toxicol ; 168: 113355, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35952821

RESUMEN

Melanins belong to a group of pigments of different structure and origin. They can be produced synthetically or isolated from living organisms. A number of studies have reported testing of various melanins in neurological studies providing different outcomes. Because the structure of melanins can have an effect on obtained results in cell toxicity studies, we present here our original study which aimed to compare the biological effects of bacterial melanin (biotechnologically obtained from B. thuringiensis) with that of synthetic melanin in neuroblastoma cells. Both melanins were structurally characterized in detail. After melanin treatment (0-200 µg/mL), cell viability, glutathione levels, cell morphology and respiration were assessed in SH-SY5Y cells. The structural analysis showed that bacterial melanin is more hydrophilic according to the presence of larger number of -OH moieties. After melanin treatment, we found that synthetic melanin at similar dosage caused always larger cell impairment compared to bacterial melanin. In addition, more severe toxic effect of synthetic melanin was found in mitochondria. In general, we conclude that more hydrophilic, bacterial melanin induced lower toxicity in neuroblastoma cells in comparison to synthetic melanin. Our findings can be useable for neuroscientific studies estimating the potential use for study of neuroprotection, neuromodulation or neurotoxicity.


Asunto(s)
Melaninas , Neuroblastoma , Bacterias , Glutatión , Humanos , Mitocondrias , Neuroblastoma/tratamiento farmacológico
8.
Molecules ; 26(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443297

RESUMEN

The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.


Asunto(s)
Células/metabolismo , Glutatión/metabolismo , Nanoestructuras/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Células/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos
9.
Sci Rep ; 11(1): 11921, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099803

RESUMEN

At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Espectrometría de Fluorescencia/métodos , Bisbenzimidazol/química , Camptotecina/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Núcleo Celular/metabolismo , Cisplatino/farmacología , Citometría de Flujo/métodos , Células Hep G2 , Humanos , Microscopía Fluorescente/métodos , Reproducibilidad de los Resultados , Estaurosporina/farmacología
10.
J Pharmacol Toxicol Methods ; 88(Pt 1): 40-45, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28642085

RESUMEN

Fluorometric glutathione assays have been generally preferred for their high specificity and sensitivity. An additional advantage offered by fluorescent bimane dyes is their ability to penetrate inside the cell. Their ability to react with glutathione within intact cells is frequently useful in flow cytometry and microscopy. Hence, the aims of our study were to use monochlorobimane for optimizing a spectrofluorometric glutathione assay in cells and then to compare that assay with the frequently used ortho-phthalaldehyde assay. We used glutathione-depleting agents (e.g., cisplatin and diethylmalonate) to induce cell impairment. For glutathione assessment, monochlorobimane (40µM) was added to cells and fluorescence was detected at 394/490nm. In addition to the regularly used calculation of glutathione levels from fluorescence change after 60min, we used an optimized calculation from the linear part of the fluorescence curve after 10min of measurement. We found that 10min treatment of cells with monochlorobimane is sufficient for evaluating cellular glutathione concentration and provides results entirely comparable with those from the standard ortho-phthalaldehyde assay. In contrast, the results obtained by the standardly used evaluation after 60min of monochlorobimane treatment provided higher glutathione values. We conclude that measuring glutathione using monochlorobimane with the here-described optimized evaluation of fluorescence signal could be a simple and useful method for routine and rapid assessment of glutathione within intact cells in large numbers of samples.


Asunto(s)
Bioensayo/métodos , Colorantes Fluorescentes/química , Glutatión/análisis , Pirazoles/química , Espectrometría de Fluorescencia/métodos , o-Ftalaldehído/química , Bioensayo/economía , Línea Celular , Cisplatino/toxicidad , Estudios de Factibilidad , Citometría de Flujo , Glutatión/metabolismo , Humanos , Malonatos/toxicidad , Sensibilidad y Especificidad , Espectrometría de Fluorescencia/economía
11.
Toxicol In Vitro ; 39: 52-57, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27888128

RESUMEN

Neutrophil gelatinase-associated lipocalin is an extracellular protein produced mostly in kidney. Recently, it has become a promising biomarker of renal damage in vivo. On the other hand, the validation of NGAL as a biomarker for nephrotoxicity estimation in vitro has not been characterized in detail yet. Since the HK-2 cells are frequently used human kidney cell line, we aimed to characterize the production of NGAL in these cells and to evaluate NGAL as a possible marker of cell impairment. We used heavy metals (mercury, cadmium), peroxide, drugs (acetaminophen, gentamicin) and cisplatin to mimic nephrotoxicity. HK-2 cells were incubated with selected compounds for 1-24h and cell viability was measured together with extracellular NGAL production. We proved that HK-2 cells possess a capacity to produce NGAL in amount of 2pg/ml/h. We found a change in cell viability after 24h incubation with all tested toxic compounds. The largest decrease of the viability was detected in mercury, acetaminophen, cisplatin and gentamicin. Unexpectedly, we found also a significant decrease in NGAL production in HK-2 cells treated with these toxins for 24h: to 11±5%, 54±5%, 57±6% and 76±9% respectively, compared with controls (=100%). Our results were followed with qPCR analysis when we found no significant increase in LCN2 gene expression after 24h incubation. We conclude that extracellular NGAL production negatively correlates with HK-2 cell impairment.


Asunto(s)
Lesión Renal Aguda/metabolismo , Lipocalina 2/metabolismo , Acetaminofén/toxicidad , Lesión Renal Aguda/inducido químicamente , Biomarcadores/metabolismo , Cadmio/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cisplatino/toxicidad , Gentamicinas/toxicidad , Humanos , Lipocalina 2/genética , Mercurio/toxicidad , terc-Butilhidroperóxido/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA