Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Rev Urol ; 21(6): 357-372, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38307951

RESUMEN

Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Progresión de la Enfermedad
2.
Cancer Discov ; 13(12): 2584-2609, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676710

RESUMEN

Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE: Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Factores de Transcripción , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Evasión Inmune , Receptores Androgénicos/genética , Castración , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
3.
Cell Rep Med ; 4(2): 100937, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36787737

RESUMEN

Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Inestabilidad Cromosómica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética
4.
Science ; 377(6608): eabk0637, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35981040

RESUMEN

Many risk loci for Parkinson's disease (PD) have been identified by genome-wide association studies (GWASs), but target genes and mechanisms remain largely unknown. We linked the GWAS-derived chromosome 7 locus (sentinel single-nucleotide polymorphism rs199347) to GPNMB through colocalization analyses of expression quantitative trait locus and PD risk signals, confirmed by allele-specific expression studies in the human brain. In cells, glycoprotein nonmetastatic melanoma protein B (GPNMB) coimmunoprecipitated and colocalized with α-synuclein (aSyn). In induced pluripotent stem cell-derived neurons, loss of GPNMB resulted in loss of ability to internalize aSyn fibrils and develop aSyn pathology. In 731 PD and 59 control biosamples, GPNMB was elevated in PD plasma, associating with disease severity. Thus, GPNMB represents a PD risk gene with potential for biomarker development and therapeutic targeting.


Asunto(s)
Glicoproteínas de Membrana , Enfermedad de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Ann Neurol ; 88(3): 603-613, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583480

RESUMEN

OBJECTIVE: The aim was to demonstrate that antibodies from patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis alter the levels of dopamine 1 receptor (D1R) and dopamine 2 receptor (D2R) and cause psychotic-like features in mice. METHODS: Cultured rat hippocampal neurons were treated with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, and the effects on clusters of D1R and D2R were quantified. In vivo studies included 71 C57BL/6J mice that were chronically infused with CSF from patients or controls through ventricular catheters connected to subcutaneous osmotic pumps. Prepulse inhibition of the acoustic startling reflex (PPI; a marker of psychotic-like behavior), memory, locomotor activity, and the density of cell-surface and synaptic D1R, D2R, and NMDAR clusters were examined at different time points using reported techniques. RESULTS: In cultured neurons, CSF from patients, but not from controls, caused a significant decrease of cell-surface D1R and an increase of D2R clusters. In mice, CSF from patients caused a significant decrease of synaptic and total cell-surface D1R clusters and an increase of D2R clusters associated with a decrease of PPI. These effects were accompanied by memory impairment and a reduction of surface NMDARs, as reported in this model. The psychotic-like features, memory impairment, and changes in levels of D1R, D2R, and NMDAR progressively improved several days after the infusion of CSF from patients stopped. INTERPRETATION: In addition to memory deficits and reduction of NMDARs, CSF antibodies from patients with anti-NMDAR encephalitis cause reversible psychotic-like features accompanied by changes (D1R decrease, D2R increase) in cell-surface dopamine receptor clusters. ANN NEUROL 2020 ANN NEUROL 2020;88:603-613.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Autoanticuerpos/farmacología , Neuronas/efectos de los fármacos , Receptores Dopaminérgicos/metabolismo , Reflejo de Sobresalto/efectos de los fármacos , Adolescente , Adulto , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/líquido cefalorraquídeo , Encefalitis Antirreceptor N-Metil-D-Aspartato/metabolismo , Autoanticuerpos/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Trastornos Psicóticos , Ratas , Ratas Wistar , Receptores Dopaminérgicos/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Adulto Joven
6.
Nat Rev Urol ; 17(5): 292-307, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203305

RESUMEN

Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Neoplasias de la Próstata/tratamiento farmacológico , Transducción de Señal/fisiología , Humanos , Masculino
7.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30100187

RESUMEN

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Glicoproteínas de Membrana/metabolismo , Poro Nuclear/fisiología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Carcinogénesis , Núcleo Celular/metabolismo , Proliferación Celular , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Membrana Nuclear , Proteínas de Complejo Poro Nuclear , Transducción de Señal
8.
J Vis Exp ; (127)2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28930981

RESUMEN

Microtubule targeting agents (MTAs) are a mainstay in the treatment of a wide range of tumors. However, acquired resistance to chemotherapeutic drugs is a common mechanism of disease progression and a prognostic-determinant feature of malignant tumors. In prostate cancer (PC), resistance to MTAs such as the taxane Docetaxel dictates treatment failure as well as progression towards lethal stages of disease that are defined by a poor prognosis and high mortality rates. Though studied for decades, the array of mechanisms contributing to acquired resistance are not completely understood, and thus pose a significant limitation to the development of new therapeutic strategies that could benefit patients in these advanced stages of disease. In this protocol, we describe the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises. Despite potential limitations intrinsic to a cell based model, such as the loss of resistance properties over time, the Docetaxel-resistant cell lines produced by this method have been successfully used in recent studies and offer the opportunity to advance our molecular understanding of acquired chemoresistance in lethal prostate cancer.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Taxoides/farmacología , Antineoplásicos/farmacología , Docetaxel , Resistencia a Antineoplásicos , Humanos , Masculino , Neoplasias de la Próstata/patología
9.
Nat Rev Urol ; 14(1): 38-48, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27872477

RESUMEN

Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.


Asunto(s)
Biomarcadores de Tumor/fisiología , Factor de Transcripción GATA2/fisiología , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Humanos , Masculino , Invasividad Neoplásica/diagnóstico , Invasividad Neoplásica/genética , Neoplasias de la Próstata/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA