Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474717

RESUMEN

(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.


Asunto(s)
Cimenos , Lamiaceae , Humanos , Fermentación , Células CACO-2 , Cromatografía de Gases y Espectrometría de Masas , Lamiaceae/química , Fenoles , Digestión , Ácidos Grasos Volátiles
2.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445810

RESUMEN

Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.


Asunto(s)
Acidosis , Neoplasias , Humanos , Concentración de Iones de Hidrógeno , Bicarbonatos/metabolismo , Matriz Extracelular/metabolismo , Colágeno Tipo I , Conductos Pancreáticos/metabolismo , Células Epiteliales/metabolismo , Intercambiadores de Sodio-Hidrógeno
3.
Nat Cancer ; 3(12): 1464-1483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36522548

RESUMEN

Solid tumors are generally characterized by an acidic tumor microenvironment (TME) that favors cancer progression, therapy resistance and immune evasion. By single-cell RNA-sequencing analysis in individuals with pancreatic ductal adenocarcinoma (PDAC), we reveal solute carrier family 4 member 4 (SLC4A4) as the most abundant bicarbonate transporter, predominantly expressed by epithelial ductal cells. Functionally, SLC4A4 inhibition in PDAC cancer cells mitigates the acidosis of the TME due to bicarbonate accumulation in the extracellular space and a decrease in lactate production by cancer cells as the result of reduced glycolysis. In PDAC-bearing mice, genetic or pharmacological SLC4A4 targeting improves T cell-mediated immune response and breaches macrophage-mediated immunosuppression, thus inhibiting tumor growth and metastases. In addition, Slc4a4 targeting in combination with immune checkpoint blockade is able to overcome immunotherapy resistance and prolong survival. Overall, our data propose SLC4A4 as a therapeutic target to unleash an antitumor immune response in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Simportadores de Sodio-Bicarbonato , Animales , Ratones , Bicarbonatos/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Inmunoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Simportadores de Sodio-Bicarbonato/genética , Microambiente Tumoral , Tolerancia Inmunológica , Neoplasias Pancreáticas
4.
Toxicol Appl Pharmacol ; 245(2): 264-71, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20307561

RESUMEN

Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I(sc)), transepithelial potential (V(t)) and resistance (R(t)) were recorded in the continuous presence of cadmium. Addition of cadmium (20 microM to 1mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I(sc) cannot be explained by an action on: 1) H(2) histamine receptor, 2) Ca(2+) signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H(+)/K(+)-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H(+)/K(+)-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Ácido Gástrico/metabolismo , Mucosa Gástrica/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Animales , Anhidrasas Carbónicas/metabolismo , Quelantes/farmacología , Relación Dosis-Respuesta a Droga , Etilenodiaminas/farmacología , Mucosa Gástrica/metabolismo , Histamina/farmacología , Técnicas In Vitro , Omeprazol/farmacología , Inhibidores de la Bomba de Protones , Rana esculenta
5.
Gastroenterology ; 137(3): 955-64, 964.e1-2, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19328800

RESUMEN

BACKGROUND & AIMS: Deoxycholate (DC) has proapoptotic and tumorigenic effects in different cell types of the gastrointestinal tract. Exposure of BHK-21 (stromal) cells to DC induces Ca(2+) entry at the plasma membrane, which affects intracellular Ca(2+) signaling. We assessed whether DC-induced increases in [Ca(2+)] can impinge on plasma membrane properties (eg, ionic conductances) involved in cell apoptosis. METHODS: Single- and double-barreled microelectrodes were used to measure membrane potential (V(m)) and extracellular [K(+)] in BHK-21 fibroblasts and Caco-2 colon carcinoma cells. Apoptosis was assessed by Hoechst labeling, propidium iodide staining, and caspase-3 and caspase-7 assays. RESULTS: DC-induced cell membrane hyperpolarization was directly measured with intracellular microelectrodes in both cell lines. Diverse Ca(2+) mobilizing agents, such as membrane receptor agonists, an inhibitor of the sarco/endoplasmic reticulum Ca(2+) adenosine triphosphatase and a Ca(2+) ionophore, also induced increases in V(m). Removal of extracellular Ca(2+) reduced the agonist- and DC-induced membrane hyperpolarization by approximately 15% and 60%, respectively. These findings indicate a prominent role for Ca(2+) entry at the plasma membrane in the action of this bile salt. Blockade of Ca(2+)-activated K(+) conductances by charybdotoxin and apamin reduced DC-induced hyperpolarization by 75% and 64% in BHK-21 and Caco-2 cells, respectively. These inhibitors also reduced the DC-induced increase in extracellular [K(+)] by 75% and cell apoptosis by approximately 50% in both cell lines. CONCLUSIONS: Ca(2+)-dependent K(+) conductance is an important regulator of DC-induced apoptosis in stromal and colon cancer cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácido Desoxicólico/farmacología , Canales de Potasio Calcio-Activados/metabolismo , Adenosina Trifosfato/farmacología , Animales , Apamina/farmacología , Bradiquinina/farmacología , Células CACO-2 , Calcio/metabolismo , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Caribdotoxina/farmacología , Quelantes/farmacología , Cricetinae , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Espacio Extracelular/metabolismo , Fibroblastos/fisiología , Humanos , Indoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Microelectrodos , Potasio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
6.
Front Biosci ; 13: 2989-99, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17981772

RESUMEN

Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Células Madre Embrionarias/metabolismo , Animales , Clonación Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ADN/metabolismo , Marcación de Gen , Técnicas Genéticas , Ratones , Microscopía Fluorescente , Microscopía por Video , Neuronas Motoras/metabolismo , Mutación , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre
7.
J Biol Chem ; 282(18): 13477-86, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17363364

RESUMEN

The mechanisms for the formation of the osmotic gradient driving water movements in the gastric gland and its modulation via the extracellular Ca(2+)-sensing receptor (CaR) were investigated. Real time measurements of net water flux in the lumen of single gastric glands of the intact amphibian stomach were performed using ion-selective double-barreled microelectrodes. Water movement was measured by recording changes in the concentration of impermeant TEA(+) ions ([TEA(+)](gl)) with TEA(+)-sensitive microelectrodes inserted in the lumen of individual gastric glands. Glandular K(+) (K(+)(gl)) and H(+) (pH(gl)) were also measured by using K(+)- and H(+)-sensitive microelectrodes, respectively. Stimulation with histamine significantly decreased [TEA](gl), indicating net water flow toward the gland lumen. This response was inhibited by the H(+)/K(+)-ATPase inhibitor, SCH 28080. Histamine also elicited a significant and reversible increase in [K(+)](gl) that was blocked by chromanol 293B, a blocker of KCQN1 K(+) channels. Histamine failed to induce net water flow in the presence of chromanol 293B. In the "resting state," stimulation of CaR with diverse agonists resulted in significant increase in [TEA](gl). CaR activation also significantly reduced histamine-induced water secretion and apical K(+) transport. Our data validate the strong link between histamine-stimulated acid secretion and water transport. We also show that cAMP-dependent [K(+)](gl) elevation prior to the onset of acid secretion generates the osmotic gradient initially driving water into the gastric glands and that CaR activation inhibits this process, probably through reduction of intracellular cAMP levels.


Asunto(s)
Proteínas Anfibias/metabolismo , Ácido Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Receptores Sensibles al Calcio/metabolismo , Agua/metabolismo , Proteínas Anfibias/antagonistas & inhibidores , Animales , Cromanos/farmacología , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Histamina/farmacología , Imidazoles/farmacología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Microelectrodos , Ósmosis/efectos de los fármacos , Ósmosis/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Inhibidores de la Bomba de Protones , Rana esculenta , Receptores Sensibles al Calcio/antagonistas & inhibidores , Sulfonamidas/farmacología
8.
J Biol Chem ; 278(41): 39503-8, 2003 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-12888563

RESUMEN

Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 microM TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Ácido Egtácico/análogos & derivados , Inositol 1,4,5-Trifosfato/farmacología , Animales , Canales de Calcio/metabolismo , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/metabolismo , Línea Celular , Quelantes/farmacología , Cricetinae , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Etilenodiaminas/farmacología , Hidroquinonas/farmacología , Receptores de Inositol 1,4,5-Trifosfato , Metales Pesados/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA