Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancers (Basel) ; 15(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38001635

RESUMEN

Lung carcinoids (LCs) comprise well-differentiated neuroendocrine tumors classified as typical (TCs) and atypical (ACs) carcinoids. Unfortunately, curative therapies remain elusive for metastatic LCs, which account for 25-30% of cases. This study evaluated the antitumor activity of axitinib (AXI), a second-generation tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptors (VEGFR-1, VEGFR-2, VEGFR-3) in human lung TC (NCI-H727, UMC-11, NCI-H835) and AC (NCI-H720) cell lines. In vitro and in vivo (zebrafish) assays were performed following AXI treatment to gather several read-outs about cell viability, cell cycle, the secretion of proangiogenic factors, apoptosis, tumor-induced angiogenesis and migration. AXI demonstrated relevant antitumor activity in human LC cells, with pronounced effects observed in UMC-11 and NCI-H720, characterized by cell cycle perturbation and apoptosis induction. AXI significantly hindered tumor induced-angiogenesis in Tg(fli1a:EGFP)y1 zebrafish embryos implanted with all LC cell lines and also reduced the invasiveness of NCI-H720 cells, as well as the secretion of several proangiogenic factors. In conclusion, our study provides initial evidence supporting the potential anti-tumor activity of AXI in LC, offering a promising basis for future investigations in mammalian animal models and, eventually, progressing to clinical trials.

2.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855330

RESUMEN

Neuroendocrine tumors (NETs) are highly vascularized malignancies in which angiogenesis may entail cell proliferation and survival. Among the emerging compounds with antivascular properties, cabozantinib (CAB) appeared promising. We analyzed the antitumor activity of CAB against NETs utilizing in vitro and in vivo models. For cell cultures, we used BON-1, NCI-H727 and NCI-H720 cell lines. Cell viability was assessed by manual count coupled with quantification of cell death, performed through fluorescence-activated cell sorting analysis as propidium iodide exclusion assay. In addition, we investigated the modulation of the antiapoptotic myeloid cell leukemia 1 protein under CAB exposure, as a putative adaptive pro-survival mechanism, and compared the responses with sunitinib. The activity of CAB was also tested in mouse and zebrafish xenograft tumor models. Cabozantinib showed a dose-dependent and time-dependent effect on cell viability and proliferation in human NET cultures, besides a halting of cell cycle progression for endoduplication, never reported for other tyrosine kinase inhibitors. In a transplantable zebrafish model, CAB drastically inhibited NET-induced angiogenesis and migration of implanted cells through the embryo body. CAB showed encouraging activity in NETs, both in vitro and in vivo models. On this basis, we envisage future research to further investigate along these promising lines.


Asunto(s)
Tumores Neuroendocrinos , Pez Cebra , Humanos , Animales , Ratones , Transducción de Señal , Tumores Neuroendocrinos/patología , Línea Celular Tumoral
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835022

RESUMEN

Carcinoid syndrome represents a debilitating paraneoplastic disease, caused by the secretion of several substances, occurring in about 10-40% of patients with well-differentiated neuroendocrine tumors (NETs). The main signs and symptoms associated with carcinoid syndrome are flushing, diarrhea, hypotension, tachycardia, bronchoconstriction, venous telangiectasia, dyspnea and fibrotic complications (mesenteric and retroperitoneal fibrosis, and carcinoid heart disease). Although there are several drugs available for the treatment of carcinoid syndrome, the lack of therapeutic response, poor tolerance or resistance to drugs are often reported. Preclinical models are indispensable tools for investigating the pathogenesis, mechanisms for tumor progression and new therapeutic approaches for cancer. This paper provides a state-of-the-art overview of in vitro and in vivo models in NETs with carcinoid syndrome, highlighting the future developments and therapeutic approaches in this field.


Asunto(s)
Síndrome Carcinoide Maligno , Tumores Neuroendocrinos , Humanos , Síndrome Carcinoide Maligno/complicaciones , Síndrome Carcinoide Maligno/tratamiento farmacológico , Tumores Neuroendocrinos/terapia , Diarrea/tratamiento farmacológico
4.
Cancers (Basel) ; 14(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139603

RESUMEN

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from parafollicular C cells of the thyroid gland. In this preclinical study, we tested three tyrosine-kinase inhibitors (TKIs): SU5402, a selective inhibitor of fibroblast growth factor receptor (FGFR)-1 and vascular endothelial growth factor receptor (VEGFR)-2; sulfatinib, an inhibitor of FGFR-1 and VEGFR-1, -2, -3; and SPP86, a RET-specific inhibitor. The effects of these compounds were evaluated in vitro in two human MTC cell lines (TT and MZ-CRC-1), and in vivo using xenografts of MTC cells in zebrafish embryos. SU5402, sulfatinib and SPP86 decreased cell viability. Sulfatinib and SPP86 significantly induced apoptosis in both cell lines. Sulfatinib and SPP86 inhibited the migration of TT and MZCRC-1 cells, while SU5402 was able to inhibit migration only in TT cells. In vivo we observed a significant reduction in TT cell-induced angiogenesis in zebrafish embryos after incubation with sulfatinib and SPP86. In conclusion, sulfatinib and SPP86 displayed a relevant antitumor activity both in vitro and in vivo. Moreover, this work suggests the potential utility of targeting FGFR and VEGFR signaling pathways as an alternative therapy for MTC.

5.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897702

RESUMEN

Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)y1 zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening.


Asunto(s)
Tumor Carcinoide , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Animales , Tumor Carcinoide/tratamiento farmacológico , Carcinoma Neuroendocrino/patología , Xenoinjertos , Humanos , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Pez Cebra
7.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809722

RESUMEN

Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anilidas/uso terapéutico , Carcinoma Neuroendocrino/tratamiento farmacológico , Piperidinas/uso terapéutico , Piridinas/uso terapéutico , Quinazolinas/uso terapéutico , Neoplasias de la Tiroides/tratamiento farmacológico , Pez Cebra/fisiología , Anilidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma Neuroendocrino/irrigación sanguínea , Carcinoma Neuroendocrino/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Embrión no Mamífero/irrigación sanguínea , Embrión no Mamífero/efectos de los fármacos , Humanos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Piridinas/farmacología , Neoplasias de la Tiroides/irrigación sanguínea , Neoplasias de la Tiroides/patología , Pez Cebra/embriología
8.
Neuroendocrinology ; 111(10): 937-950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33075795

RESUMEN

INTRODUCTION: Somatostatin and dopamine (DA) receptors have a pivotal role in controlling hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the anti-tumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-DA chimera, in 2 human MTC cell lines. METHODS: The effects of lanreotide (LAN) and TBR-065 on cell growth and proliferation, calcitonin (CT) secretion, cell cycle, apoptosis, cell migration, and tumor-induced angiogenesis have been evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA flow cytometry with propidium iodide (PI), Annexin V-FITC/PI staining, electrochemiluminescence immuno assay, wound-healing assay, and zebrafish platform, respectively. RESULTS: TBR-065 exerted a more prominent anti-tumor activity than LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: -50.3 and -37.6%, respectively; in MZ-CRC-1: -58.8 and -27%, respectively) and migration (in TT: -42.7 and -22.9%, respectively; in MZ-CRC-1: -75.5 and -58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: -33.8%; MZ-CRC-1: -18.8%) and increased cells in G2/M phase (TT: +13%; MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect than LAN in TT cells. A concomitant decrease in CT secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. DISCUSSION/CONCLUSION: In MTC cell lines, a second-generation somatostatin-DA analog, TBR-065, exerts a more relevant anti-tumor activity than LAN, through modulation of cell cycle, induction of apoptosis, and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino/tratamiento farmacológico , Dopamina/análisis , Somatostatina/análisis , Neoplasias de la Tiroides/tratamiento farmacológico , Línea Celular Tumoral , Humanos
10.
Endocr Relat Cancer ; 27(6): R163-R176, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252025

RESUMEN

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms that originate from the neuroendocrine system. In several cases, these neoplasms can release bioactive hormones leading to characteristic clinical syndromes and hormonal dysregulations with detrimental impact on the quality of life and survival of these patients. Only few animal models are currently available to investigate pathogenesis, progression and functional syndromes in NETs and to identify new therapeutic strategies. The tropical teleost zebrafish (Danio rerio) is a popular vertebrate model system that offers unique advantages for the study of several biological processes, ranging from embryonic development to human diseases such as cancer. In this review, we summarize recent advances on zebrafish models for NET preclinical research that take advantage of modern genetic and transplantable technologies. In the future, these tools may have a role in the treatment decision-making and tertiary prevention of NETs.


Asunto(s)
Tumores Neuroendocrinos/patología , Animales , Humanos , Pez Cebra
11.
Crit Rev Oncol Hematol ; 146: 102840, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31918344

RESUMEN

Neuroendocrine neoplasms (NENs) are a group of tumors originating from the neuroendocrine system. They mainly occur in the digestive system and the respiratory tract. It is well-know a strict interaction between neuroendocrine system and inflammation, which can play an important role in NEN carcinogenesis. Inflammatory mediators, which are produced by the tumor microenvironment, can favor cancer induction and progression, and can promote immune editing. On the other hand, a balanced immune system represents a relevant step in cancer prevention through the elimination of dysplastic and cancer cells. Therefore, an inflammatory response may be both pro- and anti-tumorigenic. In this review, we provide an overview concerning the complex interplay between inflammation and gastroenteropancreatic NENs, focusing on the tumorigenesis and clinical implications in these tumors.


Asunto(s)
Neoplasias Gastrointestinales/inmunología , Mediadores de Inflamación/inmunología , Inflamación/inmunología , Neoplasias Intestinales/inmunología , Tumores Neuroendocrinos/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Gástricas/inmunología , Citocinas/metabolismo , Neoplasias Gastrointestinales/patología , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Neoplasias Intestinales/patología , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Neoplasias Gástricas/patología , Microambiente Tumoral
12.
Eur J Endocrinol ; 181(1): R1-R10, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31048562

RESUMEN

Neuroendocrine neoplasms (NENs) are traditionally considered as a single group of rare malignancies that originate from the highly spread neuroendocrine system. The clinical management is complex due to the high heterogeneity of these neoplasms in terms of clinical aggressiveness and response to the therapy. Indeed, a multidisciplinary approach is required to reach a personalization of the therapy, including cancer rehabilitation. In this review, we discuss the possibility to adopt a precision medicine (PM) approach in the management of NENs. To this purpose, we summarize current knowledge and future perspectives about biomarkers and preclinical in vitro and in vivo platforms, potentially useful to inform clinicians about the prognosis and for tailoring therapy in patients with NENs. This approach may represent a breakthrough in the therapy and tertiary prevention of these tumors.


Asunto(s)
Endocrinología/tendencias , Tumores Neuroendocrinos/terapia , Medicina de Precisión/tendencias , Predicción , Humanos , Grupo de Atención al Paciente/tendencias
13.
Nucleic Acids Res ; 47(3): 1278-1293, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30544196

RESUMEN

SMYD3 is a methylase previously linked to cancer cell invasion and migration. Here we show that SMYD3 favors TGFß-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells, promoting mesenchymal and EMT transcription factors expression. SMYD3 directly interacts with SMAD3 but it is unnecessary for SMAD2/3 phosphorylation and nuclear translocation. Conversely, SMYD3 is indispensable for SMAD3 direct association to EMT genes regulatory regions. Accordingly, SMYD3 knockdown or its pharmacological blockade with the BCI121 inhibitor dramatically reduce TGFß-induced SMAD3 association to the chromatin. Remarkably, BCI121 treatment attenuates mesenchymal genes transcription in the mesenchymal-like MDA-MB-231 cell line and reduces their invasive ability in vivo, in a zebrafish xenograft model. In addition, clinical datasets analysis revealed that higher SMYD3 levels are linked to a less favorable prognosis in claudin-low breast cancers and to a reduced metastasis free survival in breast cancer patients. Overall, our data point at SMYD3 as a pivotal SMAD3 cofactor that promotes TGFß-dependent mesenchymal gene expression and cell migration in breast cancer, and support SMYD3 as a promising pharmacological target for anti-cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Cromatina/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Fosforilación , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
14.
J Biomed Opt ; 22(10): 1-7, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29030941

RESUMEN

Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 µm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.


Asunto(s)
Vasos Sanguíneos/embriología , Animales , Vasos Sanguíneos/diagnóstico por imagen , Capilares/diagnóstico por imagen , Capilares/embriología , Simulación por Computador , Progresión de la Enfermedad , Hemodinámica , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Microcirculación/fisiología , Microscopía , Modelos Estadísticos , Morfogénesis , Oxígeno/química , Análisis Espacio-Temporal , Espectrofotometría , Pez Cebra
15.
Thyroid ; 27(2): 279-291, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27809680

RESUMEN

BACKGROUND: Heterozygous mutations in the thyroid hormone receptor alpha (THRA) gene cause resistance to thyroid hormone alpha (RTHα), a disease characterized by variable manifestations reminiscent of untreated congenital hypothyroidism but a raised triiodothyronine/thyroxine ratio and normal thyrotropin levels. It was recently described that zebrafish embryos expressing a dominant negative (DN) form of thraa recapitulate the key features of RTHα, and that zebrafish and human receptors are functionally interchangeable. METHODS: This study expressed several human thyroid hormone receptor alpha (hTRα) variants in zebrafish embryos and analyzed the resulting phenotypes. RESULTS: All hTRα-injected embryos showed variable defects, including cerebral and cardiac edema likely caused by an aberrant looping during heart development, anemia, and an incomplete formation of the vascular network. Moreover, the hTRα-injected embryos presented severe defects of motorneurons and craniofacial development, thus affecting their autonomous feeding and swimming behaviors. Surprisingly, expression of all hTRα mutants had no detectable effect on thyrotropin beta and thyrotropin-releasing hormone transcripts, indicating that their DN action is limited on the thyroid hormone reception beta 2 targets at the hypothalamic/pituitary level in vivo. As previously described in vitro, treatment with high triiodothyronine doses can efficiently revert the observed defects only in embryos injected with missense hTRα variants. CONCLUSION: Injection of human THRA variants in zebrafish embryos causes tissue-specific defects recapitulating most of the RTHα clinical and biochemical manifestations. The described manipulation of zebrafish embryos represents a novel in vivo model to screen the functional consequences of THRA variants and the rescue potential of new therapeutic compounds.


Asunto(s)
Hipotiroidismo Congénito/genética , Modelos Animales de Enfermedad , Receptores alfa de Hormona Tiroidea/genética , Pez Cebra , Anemia/genética , Animales , Animales Modificados Genéticamente , Edema Encefálico/genética , Hipotiroidismo Congénito/metabolismo , Anomalías Craneofaciales/genética , Edema Cardíaco/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Humanos , Enfermedad de la Neurona Motora/congénito , Enfermedad de la Neurona Motora/genética , Tirotropina/metabolismo , Tirotropina de Subunidad beta/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo
16.
Mol Cell Endocrinol ; 424: 102-17, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26802880

RESUMEN

Resistance to thyroid hormone can be due to heterozygous, dominant negative (DN) THRA (RTHα) or THRB (RTHß) mutations, but the underlying mechanisms are incompletely understood. Here, we delineate the spatiotemporal expression of TH receptors (TRs) in zebrafish and generated morphants expressing equivalent amounts of wild-type and DN TRαs (thraa_MOs) and TRßs (thrb_MOs) in vivo. Both morphants show severe developmental abnormalities. The phenotype of thraa_MOs includes brain and cardiac defects, but normal thyroid volume and tshba expression. A combined modification of dio2 and dio3 expression can explain the high T3/T4 ratio seen in thraa_MOs, as in RTHα. Thrb_MOs show abnormal eyes and otoliths, with a typical RTHß pattern of thyroid axis. The coexpression of wild-type, but not mutant, human TRs can rescue the phenotype in both morphants. High T3 doses can partially revert the dominant negative action of mutant TRs in morphant fish. Therefore, our morphants recapitulate the RTHα and RTHß key manifestations representing new models in which the functional consequences of human TR mutations can be rapidly and faithfully evaluated.


Asunto(s)
Modelos Animales de Enfermedad , Receptores alfa de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Distribución Tisular , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Sci Rep ; 5: 15814, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522474

RESUMEN

Poikiloderma with Neutropenia (PN) is an autosomal recessive genodermatosis characterized by early-onset poikiloderma, pachyonychia, hyperkeratosis, bone anomalies and neutropenia, predisposing to myelodysplasia. The causative C16orf57/USB1 gene encodes a conserved phosphodiesterase that regulates the stability of spliceosomal U6-RNA. The involvement of USB1 in splicing has not yet allowed to unveil the pathogenesis of PN and how the gene defects impact on skin and bone tissues besides than on the haematological compartment. We established a zebrafish model of PN using a morpholino-knockdown approach with two different splicing morpholinos. Both usb1-depleted embryos displayed developmental abnormalities recapitulating the signs of the human syndrome. Besides the pigmentation and osteochondral defects, usb1-knockdown caused defects in circulation, manifested by a reduced number of circulating cells. The overall morphant phenotype was also obtained by co-injecting sub-phenotypic dosages of the two morpholinos and could be rescued by human USB1 RNA. Integrated in situ and real-time expression analyses of stage-specific markers highlighted defects of primitive haematopoiesis and traced back the dramatic reduction in neutrophil myeloperoxidase to the myeloid progenitors showing down-regulated pu.1 expression. Our vertebrate model of PN demonstrates the intrinsic requirement of usb1 in haematopoiesis and highlights PN as a disorder of myeloid progenitors associated with bone marrow dysfunction.


Asunto(s)
Células Mieloides/metabolismo , Neutropenia/genética , Anomalías Cutáneas/genética , Células Madre/metabolismo , Pez Cebra/genética , Animales , Regulación hacia Abajo/genética , Humanos , Morfolinos/genética , Fenotipo , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Enfermedades de la Piel/genética , Enfermedades de la Piel/metabolismo
18.
J Cell Physiol ; 230(4): 821-30, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25205658

RESUMEN

The Coiled-Coil Domain Containing 80 (CCDC80) gene has been identified as strongly induced in rat thyroid PC CL3 cells immortalized by the adenoviral E1A gene. In human, CCDC80 is a potential oncosoppressor due to its down-regulation in several tumor cell lines and tissues and it is expressed in almost all tissues. CCDC80 has homologous in mouse, chicken, and zebrafish. We cloned the zebrafish ccdc80 and analyzed its expression and function during embryonic development. The in-silico translated zebrafish protein shares high similarity with its mammalian homologous, with nuclear localization signals and a signal peptide. Gene expression analysis demonstrates that zebrafish ccdc80 is maternally and zygotically expressed throughout the development. In particular, ccdc80 is strongly expressed in the notochord and it is under the regulation of the Hedgehog pathway. In this work we investigated the functional effects of ccdc80-loss-of-function during embryonic development and verified its interaction with gadd45ß2 in somitogenesis.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal/genética , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación hacia Abajo/fisiología , Proteínas Hedgehog/metabolismo , Pez Cebra/embriología
19.
J Med Genet ; 51(7): 436-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24711647

RESUMEN

BACKGROUND: Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion syndrome compared to NF1 patients with intragenic mutation, presumably owing to haploinsufficiency of one or more genes included in the deletion interval and involved in heart development. In order to identify which genes could be responsible for cardiovascular malformations in the deleted patients, we carried out expression studies in mouse embryos and functional studies in zebrafish. METHODS AND RESULTS: The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, SUZ12 and UTP6, performed by in situ hybridisation, showed the expression of ADAP2 murine ortholog in heart during fundamental phases of cardiac morphogenesis. In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-injected embryos (morphants) displayed in vivo circulatory and heart shape defects. The molecular characterisation of morphants with cardiac specific markers showed that the injection of adap2-MOs causes defects in heart jogging and looping. Additionally, morphological and molecular analysis of adap2 morphants demonstrated that the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. CONCLUSIONS: Overall, our findings indicate that ADAP2 has a role in heart development, and might be a reliable candidate gene for the occurrence of cardiovascular malformations in patients with NF1 microdeletion and, more generally, for the occurrence of a subset of congenital heart defects.


Asunto(s)
Anomalías Cardiovasculares/genética , Anomalías Craneofaciales/genética , Proteínas Activadoras de GTPasa/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Neurofibromatosis/genética , Animales , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Corazón/embriología , Humanos , Ratones , Morfogénesis , Pez Cebra
20.
PLoS One ; 7(12): e51245, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251467

RESUMEN

BACKGROUND: Endothelial cell junctions control blood vessel permeability. Altered permeability can be associated with vascular fragility that leads to vessel weakness and haemorrhage formation. In vivo studies on the function of genes involved in the maintenance of vascular integrity are essential to better understand the molecular basis of diseases linked to permeability defects. Ve-ptp (Vascular Endothelial-Protein Tyrosine Phosphatase) is a transmembrane protein present at endothelial adherens junctions (AJs). METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of Ve-ptp in AJ maturation/stability and in the modulation of endothelial permeability using zebrafish (Danio rerio). Whole-mount in situ hybridizations revealed zve-ptp expression exclusively in the developing vascular system. Generation of altered zve-ptp transcripts, induced separately by two different splicing morpholinos, resulted in permeability defects closely linked to vascular wall fragility. The ultrastructural analysis revealed a statistically significant reduction of junction complexes and the presence of immature AJs in zve-ptp morphants but not in control embryos. CONCLUSIONS/SIGNIFICANCE: Here we show the first in vivo evidence of a potentially critical role played by Ve-ptp in AJ maturation, an important event for permeability modulation and for the development of a functional vascular system.


Asunto(s)
Uniones Adherentes/fisiología , Vasos Sanguíneos/fisiología , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Uniones Adherentes/enzimología , Animales , Secuencia de Bases , Vasos Sanguíneos/enzimología , Western Blotting , Células Cultivadas , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Neovascularización Fisiológica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA