Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antioxid Redox Signal ; 28(1): 15-30, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28648093

RESUMEN

AIMS: Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). RESULTS: We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. INNOVATION: Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. CONCLUSION: Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.


Asunto(s)
Neurogénesis , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Convulsiones/metabolismo , Animales , Proliferación Celular , Cisteína/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/genética , Convulsiones/genética , Convulsiones/fisiopatología , Transducción de Señal
2.
Stem Cells ; 28(7): 1219-30, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20506358

RESUMEN

Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 microM) increased cell proliferation, whereas higher concentrations (100 microM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27(KIP1), allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS(-/-) mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus.


Asunto(s)
Proliferación Celular , Receptores ErbB/metabolismo , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Células Cultivadas , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA