Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 8(1): 585, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330364

RESUMEN

A promising emerging area for the treatment of obesity and diabetes is combinatorial hormone therapy, where single-molecule peptides are rationally designed to integrate the complementary actions of multiple endogenous metabolically-related hormones. We describe here a proof-of-concept study on developing unimolecular polypharmacy agents through the use of selection methods based on phage-displayed peptide libraries (PDL). Co-agonists of the glucagon (GCG) and GLP-1 receptors were identified from a PDL sequentially selected on GCGR- and GLP1R-overexpressing cells. After two or three rounds of selection, 7.5% of randomly picked clones were GLP1R/GCGR co-agonists, and a further 1.53% were agonists of a single receptor. The phages were sequenced and 35 corresponding peptides were synthesized. 18 peptides were potent co-agonists, 8 of whom showed EC50 ≤ 30 pM on each receptor, comparable to the best rationally designed co-agonists reported in the literature. Based on literature examples, two sequences were engineered to stabilize against dipeptidyl peptidase IV cleavage and prolong the in vivo half-life: the engineered peptides were comparably potent to the parent peptides on both receptors, highlighting the potential use of phage-derived peptides as therapeutic agents. The strategy described here appears of general value for the discovery of optimized polypharmacology paradigms across several metabolically-related hormones.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Péptidos/síntesis química , Péptidos/farmacología , Receptores de Glucagón/agonistas , Diabetes Mellitus/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Humanos , Obesidad/tratamiento farmacológico , Biblioteca de Péptidos , Péptidos/genética , Polifarmacia , Análisis de Secuencia de ADN
2.
Mol Metab ; 2(4): 376-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327954

RESUMEN

The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the ß1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.

3.
Biopolymers ; 98(5): 443-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23203689

RESUMEN

The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to α-amino-isobutyric acid (Aib) substitution at position two, we show that α,α'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia.


Asunto(s)
Péptido 1 Similar al Glucagón/agonistas , Receptores de Glucagón/agonistas , Pérdida de Peso , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Ácidos Aminoisobutíricos/química , Animales , Fármacos Antiobesidad/síntesis química , Fármacos Antiobesidad/farmacocinética , Fármacos Antiobesidad/normas , Glucemia/química , Glucemia/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/química , Péptido 1 Similar al Glucagón/síntesis química , Péptido 1 Similar al Glucagón/farmacocinética , Receptor del Péptido 1 Similar al Glucagón , Glucosa/efectos adversos , Glucosa/química , Glucosa/farmacología , Glucogenólisis , Histidina/química , Humanos , Hiperglucemia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Datos de Secuencia Molecular , Proteolisis , Receptores de Glucagón/química , Relación Estructura-Actividad , Transfección
4.
J Pept Sci ; 17(4): 270-80, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21294225

RESUMEN

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon-like peptide 1 (GLP-1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose-dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37-amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP-1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment-associated nausea than GLP-1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half-life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP-IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP-IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258-2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Oxintomodulina/química , Oxintomodulina/metabolismo , Secuencia de Aminoácidos , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Humanos , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Obesidad/tratamiento farmacológico , Oxintomodulina/farmacología , Oxintomodulina/uso terapéutico , Péptidos/síntesis química , Péptidos/química , Péptidos/genética , Pérdida de Peso/efectos de los fármacos
5.
Mol Cell ; 22(5): 599-610, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16762833

RESUMEN

The structure of FADD has been solved in solution, revealing that the death effector domain (DED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Caspasas/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Caspasa 8 , Caspasas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Células Jurkat , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transducción de Señal , Transfección , Receptor fas/metabolismo
6.
Nat Struct Biol ; 10(2): 126-30, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12524532

RESUMEN

The uptake of nickel in Escherichia coli and other microorganisms is transcriptionally regulated by the NikR repressor or its homologs. Here we report the structure of the high-affinity nickel-binding site in NikR and show that it responds dramatically to DNA binding. X-ray absorption spectroscopy reveals that nickel in the holo-NikR protein is bound in a novel four-coordinate planar site consisting of two histidines, one additional O- or N-donor ligand and one S-donor ligand. Site-directed mutation of His87, His89, Cys95 or Glu97 in NikR to alanine eliminates high-affinity nickel binding and abolishes DNA binding but maintains stable protein folding. An unanticipated feature of the NikR structure is that the nickel coordination responds to DNA binding. A six-coordinate nickel site composed of O- or N-donor ligands, but lacking cysteine, forms when NikR binds to operator DNA. Because nickel binding and DNA binding are mediated by different domains within NikR, a communication link between the two domains is implicated, consistent with the finding that the nickel-binding site in a fragment corresponding to the C-terminal domain of NikR is structurally distinct from that found in holo-NikR.


Asunto(s)
ADN/metabolismo , Níquel/química , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Análisis Espectral , Rayos X
7.
Environ Health Perspect ; 110 Suppl 5: 705-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12426116

RESUMEN

Nickel has been shown to be an essential trace element involved in the metabolism of several species of bacteria, archea, and plants. In these organisms, nickel is involved in enzymes that catalyze both non-redox (e.g., urease, glyoxalase I) and redox (e.g., hydrogenase, carbon monoxide dehydrogenase, superoxide dismutase) reactions, and proteins involved in the transport, storage, metallocenter assembly, and regulation of nickel concentration have evolved. Studies of structure/function relationships in nickel biochemistry reveal that cysteine ligands are used to stabilize the Ni(III/II) redox couple. Certain nickel compounds have also been shown to be potent human carcinogens. A likely target for carcinogenic nickel is nuclear histone proteins. Here we present X-ray absorption spectroscopic studies of a model Ni peptide designed to help characterize the structure of the nickel complexes formed with histones and place them in the context of nickel structure/function relationships, to gain insights into the molecular mechanism of nickel carcinogenesis.


Asunto(s)
Absorciometría de Fotón/métodos , Transformación Celular Neoplásica , Níquel/efectos adversos , Níquel/química , Cisteína/química , Histonas/química , Humanos , Ligandos , Oxidación-Reducción , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA