Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmaceutics ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675105

RESUMEN

Altered glycolytic metabolism has been associated with chemoresistance in acute myeloid leukemia (AML). However, there are still aspects that need clarification, as well as how to explore these metabolic alterations in therapy. In the present study, we aimed to elucidate the role of glucose metabolism in the acquired resistance of AML cells to cytarabine (Ara-C) and to explore it as a therapeutic target. Resistance was induced by stepwise exposure of AML cells to increasing concentrations of Ara-C. Ara-C-resistant cells were characterized for their growth capacity, genetic alterations, metabolic profile, and sensitivity to different metabolic inhibitors. Ara-C-resistant AML cell lines, KG-1 Ara-R, and MOLM13 Ara-R presented different metabolic profiles. KG-1 Ara-R cells exhibited a more pronounced glycolytic phenotype than parental cells, with a weaker acute response to 3-bromopyruvate (3-BP) but higher sensitivity after 48 h. KG-1 Ara-R cells also display increased respiration rates and are more sensitive to phenformin than parental cells. On the other hand, MOLM13 Ara-R cells display a glucose metabolism profile similar to parental cells, as well as sensitivity to glycolytic inhibitors. These results indicate that acquired resistance to Ara-C in AML may involve metabolic adaptations, which can be explored therapeutically in the AML patient setting who developed resistance to therapy.

2.
ACS Omega ; 7(8): 6568-6578, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252653

RESUMEN

In this study, novel antimicrobial biocomposite films comprising a genetically engineered silk-elastin protein polymer (SELP) and essential oil from Mentha piperita (MPEO) have been fabricated and tested for the antibacterial performance. SELP/MPEO biocomposite films were prepared by solvent casting using water as the solvent and aqueous emulsions of MPEO at different concentrations. Emulsions of MPEO were investigated, showing that the mixing method, relative amount of surfactant, and the presence of SELP influence particle size and homogeneity. The aqueous emulsions of SELP/MPEO were characterized by a population of particles between 100 and 300 nm, depending on the MPEO concentration. The emulsified oil droplets at the highest concentration showed to be homogeneously distributed into the SELP matrix and demonstrated antibacterial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Moreover, the antibacterial activity of the biocomposite films was retained after a period of storage for 7 days at 4 °C. The formulation of composites comprising natural active fillers and recombinant protein polymers opens opportunities to develop new green, functional biocomposite materials, paving the way for a new generation of multifunctional materials.

3.
ACS Biomater Sci Eng ; 7(2): 451-461, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33492122

RESUMEN

The increasing bacterial resistance to antibiotics is driving strong demand for new antimicrobial biomaterials. This work describes the fabrication of free-standing films exhibiting antimicrobial properties by combining, in the same polypeptide chain, an elastin-like recombinamer comprising 200 repetitions of the pentamer VPAVG (A200) and an 18-amino-acid truncated variant of the antimicrobial peptide BMAP-28, termed BMAP-18. The fusion protein BMAP-18A200 was overexpressed and conveniently purified by a simplified and scalable nonchromatographic process. Free-standing films of BMAP-18A200 demonstrated to be stable without requiring cross-linking agents and displayed high antimicrobial activity against skin pathogens including Gram-negative and Gram-positive bacteria as well as unicellular and filamentous fungi. The antimicrobial activity of the films was mediated by direct contact of cells with the film surface, resulting in compromised structural integrity of microbial cells. Furthermore, the BMAP-18A200 films showed no cytotoxicity on normal human cell lines (skin fibroblasts and keratinocytes). All of these results highlight the potential of these biotechnological multifunctional polymers as new drug-free materials to prevent and treat microbial infections.


Asunto(s)
Antiinfecciosos , Secuencia de Aminoácidos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias Grampositivas , Humanos , Proteínas Citotóxicas Formadoras de Poros
4.
Curr Med Chem ; 27(24): 4087-4108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-29848266

RESUMEN

Colorectal Cancer (CRC) is a major cause of cancer-related death worldwide. CRC increased risk has been associated with alterations in the intestinal microbiota, with decreased production of Short Chain Fatty Acids (SCFAs). SCFAs produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch. While colonocytes use the three major SCFAs, namely acetate, propionate and butyrate, as energy sources, transformed CRC cells primarily undergo aerobic glycolysis. Compared to normal colonocytes, CRC cells exhibit increased sensitivity to SCFAs, thus indicating they play an important role in cell homeostasis. Manipulation of SCFA levels in the intestine, through changes in microbiota, has therefore emerged as a potential preventive/therapeutic strategy for CRC. Interest in understanding SCFAs mechanism of action in CRC cells has increased in the last years. Several SCFA transporters like SMCT-1, MCT-1 and aquaporins have been identified as the main transmembrane transporters in intestinal cells. Recently, it was shown that acetate promotes plasma membrane re-localization of MCT-1 and triggers changes in the glucose metabolism. SCFAs induce apoptotic cell death in CRC cells, and further mechanisms have been discovered, including the involvement of lysosomal membrane permeabilization, associated with mitochondria dysfunction and degradation. In this review, we will discuss the current knowledge on the transport of SCFAs by CRC cells and their effects on CRC metabolism and survival. The impact of increasing SCFA production by manipulation of colon microbiota on the prevention/therapy of CRC will also be addressed.


Asunto(s)
Neoplasias Colorrectales , Dieta , Fibras de la Dieta , Ácidos Grasos Volátiles , Humanos
5.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30993332

RESUMEN

In the last decades, 3-bromopyruvate (3BP) has been intensively studied as a promising anticancer and antimicrobial agent. The transport of this drug inside the cell is a critical step for its toxicity in cancer and microorganisms. The Cryptococcus neoformans is the most sensitive species of microorganisms toward 3BP. Its cells exhibit the highest uptake rate of 3BP among all tested fungal strains. In Saccharomyces cerevisiae cells, the Jen1 transporter was found to be responsible for 3BP sensitivity. The deletion of Jen1 resulted in the abolishment of 3BP mediated transport. We functionally characterized the Jen4 protein, a Jen1 homologue of C. neoformans, and its role in the phenotypic 3BP sensitivity. The deletion of the CNAG_04704 gene, which encodes Jen4, was found to impair the mediated transport of 3BP and decrease 3BP sensitivity. Further heterologous expression of Jen4 in the S. cerevisiae jen1Δ ady2Δ strain restored the mediated transport of 3BP. The application of a green fluorescent protein fusion tag with the CNAG_04704, revealed the Jen4 labeled on the plasma membrane. The identification of 3BP transporters in pathogen cells is of great importance for understanding the mechanisms of 3BP action and to anticipate the application of this compound as an antimicrobial drug.


Asunto(s)
Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Piruvatos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes , Transportadores de Ácidos Monocarboxílicos/genética , Saccharomyces cerevisiae/genética
6.
Biol Chem ; 400(6): 787-799, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30699066

RESUMEN

Monocarboxylate transporters (MCTs) inhibition leads to disruption in glycolysis, induces cell death and decreases cell invasion, revealing the importance of MCT activity in intracellular pH homeostasis and tumor aggressiveness. 3-Bromopyruvate (3BP) is an anti-tumor agent, whose uptake occurs via MCTs. It was the aim of this work to unravel the importance of extracellular conditions on the regulation of MCTs and in 3BP activity. HCT-15 was found to be the most sensitive cell line, and also the one that presented the highest basal expression of both MCT1 and of its chaperone CD147. Glucose starvation and hypoxia induced an increased resistance to 3BP in HCT-15 cells, in contrast to what happens with an extracellular acidic pH, where no alterations in 3BP cytotoxicity was observed. However, no association with MCT1, MCT4 and CD147 expression was observed, except for glucose starvation, where a decrease in CD147 (but not of MCT1 and MCT4) was detected. These results show that 3BP cytotoxicity might include other factors beyond MCTs. Nevertheless, treatment with short-chain fatty acids (SCFAs) increased the expression of MCT4 and CD147 as well as the sensitivity of HCT-15 cells to 3BP. The overall results suggest that MCTs influence the 3BP effect, although they are not the only players in its mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Basigina/metabolismo , Neoplasias Colorrectales/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piruvatos/farmacología , Simportadores/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Glucosa/metabolismo , Glucólisis , Humanos , Concentración de Iones de Hidrógeno , Oxígeno/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo
7.
Yeast ; 36(4): 211-221, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30462852

RESUMEN

3-Bromopyruvate (3BP) is a small, highly reactive molecule formed by bromination of pyruvate. In the year 2000, the antitumor properties of 3BP were discovered. Studies using animal models proved its high efficacy for anticancer therapy with no apparent side effects. This was also found to be the case in a limited number of cancer patients treated with 3BP. Due to the "Warburg effect," most tumor cells exhibit metabolic changes, for example, increased glucose consumption and lactic acid production resulting from mitochondrial-bound overexpressed hexokinase 2. Such alterations promote cell migration, immortality via inhibition of apoptosis, and less dependence on the availability of oxygen. Significantly, these attributes also make cancer cells more sensitive to agents, such as 3BP that inhibits energy production pathways without harming normal cells. This selectivity of 3BP is mainly due to overexpressed monocarboxylate transporters in cancer cells. Furthermore, 3BP is not a substrate for any pumps belonging to the ATP-binding cassette superfamily, which confers resistance to a variety of drugs. Also, 3BP has the capacity to induce multiple forms of cell death, by, for example, ATP depletion resulting from inactivation of both glycolytic and mitochondrial energy production pathways. In addition to its anticancer property, 3BP also exhibits antimicrobial activity. Various species of microorganisms are characterized by different susceptibility to 3BP inhibition. Among tested strains, the most sensitive was found to be the pathogenic yeast-like fungus Cryptococcus neoformans. Significantly, studies carried out in our laboratories have shown that 3BP exhibits a remarkable capacity to eradicate cancer cells, fungi, and algae.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Piruvatos/farmacología , Ácido Pirúvico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Hongos/efectos de los fármacos , Glucólisis , Hexoquinasa/genética , Humanos , Melanoma/tratamiento farmacológico , Mitocondrias , Mieloma Múltiple/tratamiento farmacológico , Ácido Pirúvico/análogos & derivados
8.
Acta Biomater ; 47: 50-59, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27713086

RESUMEN

The objective of this work was to exploit the fibronectin type II (FNII) module from human matrix metalloproteinase-2 as a functional domain for the development of silk-based biopolymer blends that display enhanced cell adhesion properties. The DNA sequence of spider dragline silk protein (6mer) was genetically fused with the FNII coding sequence and expressed in Escherichia coli. The chimeric protein 6mer+FNII was purified by non-chromatographic methods. Films prepared from 6mer+FNII by solvent casting promoted only limited cell adhesion of human skin fibroblasts. However, the performance of the material in terms of cell adhesion was significantly improved when 6mer+FNII was combined with a silk-elastin-like protein in a concentration-dependent behavior. With this work we describe a novel class of biopolymer that promote cell adhesion and potentially useful as biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This work reports the development of biocompatible silk-based composites with enhanced cell adhesion properties suitable for biomedical applications in regenerative medicine. The biocomposites were produced by combining a genetically engineered silk-elastin-like protein with a genetically engineered spider-silk-based polypeptide carrying the three domains of the fibronectin type II module from human metalloproteinase-2. These composites were processed into free-standing films by solvent casting and characterized for their biological behavior. To our knowledge this is the first report of the exploitation of all three FNII domains as a functional domain for the development of bioinspired materials with improved biological performance. The present study highlights the potential of using genetically engineered protein-based composites as a platform for the development of new bioinspired biomaterials.


Asunto(s)
Materiales Biocompatibles/farmacología , Fibroblastos/citología , Fibronectinas/farmacología , Seda/farmacología , Secuencia de Aminoácidos , Western Blotting , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Fibroblastos/efectos de los fármacos , Fibronectinas/química , Fibronectinas/aislamiento & purificación , Humanos , Fenómenos Mecánicos , Espectroscopía Infrarroja por Transformada de Fourier
9.
Oncotarget ; 7(43): 70639-70653, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28874966

RESUMEN

Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP). We provide evidence that acetate enters CRC cells by the secondary active transporters MCT1 and/or MCT2 and SMCT1 as well as by facilitated diffusion via aquaporins. CRC cell exposure to acetate upregulates the expression of MCT1, MCT4 and CD147, while promoting MCT1 plasma membrane localization. We also observed that acetate increases CRC cell glycolytic phenotype and that acetate-induced apoptosis and anti-proliferative effect was potentiated by 3BP. Our data suggest that acetate selectivity towards CRC cells might be explained by the fact that aquaporins and MCTs are found overexpressed in CRC clinical cases. Our work highlights the importance that acetate transport regulation has in the use of drugs such as 3BP as a new therapeutic strategy for CRC.


Asunto(s)
Acetatos/metabolismo , Neoplasias Colorrectales/metabolismo , Transporte Biológico , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Glucólisis , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Piruvatos/farmacología , Piruvatos/uso terapéutico , Simportadores/genética
10.
Biochem J ; 467(2): 247-58, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25641640

RESUMEN

Although the anti-cancer properties of 3BP (3-bromopyruvate) have been described previously, its selectivity for cancer cells still needs to be explained [Ko et al. (2001) Cancer Lett. 173, 83-91]. In the present study, we characterized the kinetic parameters of radiolabelled [14C] 3BP uptake in three breast cancer cell lines that display different levels of resistance to 3BP: ZR-75-1 < MCF-7 < SK-BR-3. At pH 6.0, the affinity of cancer cells for 3BP transport correlates with their sensitivity, a pattern that does not occur at pH 7.4. In the three cell lines, the uptake of 3BP is dependent on the protonmotive force and is decreased by MCTs (monocarboxylate transporters) inhibitors. In the SK-BR-3 cell line, a sodium-dependent transport also occurs. Butyrate promotes the localization of MCT-1 at the plasma membrane and increases the level of MCT-4 expression, leading to a higher sensitivity for 3BP. In the present study, we demonstrate that this phenotype is accompanied by an increase in affinity for 3BP uptake. Our results confirm the role of MCTs, especially MCT-1, in 3BP uptake and the importance of cluster of differentiation (CD) 147 glycosylation in this process. We find that the affinity for 3BP transport is higher when the extracellular milieu is acidic. This is a typical phenotype of tumour microenvironment and explains the lack of secondary effects of 3BP already described in in vivo studies [Ko et al. (2004) Biochem. Biophys. Res. Commun. 324, 269-275].


Asunto(s)
Antineoplásicos , Neoplasias de la Mama/metabolismo , Citotoxinas , Piruvatos , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Basigina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Citotoxinas/farmacocinética , Citotoxinas/farmacología , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteínas de Neoplasias/metabolismo , Transporte de Proteínas/efectos de los fármacos , Piruvatos/farmacocinética , Piruvatos/farmacología , Simportadores/metabolismo
11.
Appl Microbiol Biotechnol ; 98(8): 3629-38, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24092006

RESUMEN

The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli, and the purified protein was biochemically characterized. The IC50 values (concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate, citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate, citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics' surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to ß-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/or remove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.


Asunto(s)
Escherichia coli/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Clonación Molecular , Expresión Génica , Concentración 50 Inhibidora , Unión Proteica , Receptores Odorantes/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Porcinos , Textiles
12.
Biochem J ; 454(3): 585-95, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23844911

RESUMEN

In the present paper we describe a new carboxylic acid transporter in Escherichia coli encoded by the gene yaaH. In contrast to what had been described for other YaaH family members, the E. coli transporter is highly specific for acetic acid (a monocarboxylate) and for succinic acid (a dicarboxylate), with affinity constants at pH 6.0 of 1.24±0.13 mM for acetic acid and 1.18±0.10 mM for succinic acid. In glucose-grown cells the ΔyaaH mutant is compromised for the uptake of both labelled acetic and succinic acids. YaaH, together with ActP, described previously as an acetate transporter, affect the use of acetic acid as sole carbon and energy source. Both genes have to be deleted simultaneously to abolish acetate transport. The uptake of acetate and succinate was restored when yaaH was expressed in trans in ΔyaaH ΔactP cells. We also demonstrate the critical role of YaaH amino acid residues Leu¹³¹ and Ala¹64 on the enhanced ability to transport lactate. Owing to its functional role in acetate and succinate uptake we propose its assignment as SatP: the Succinate-Acetate Transporter Protein.


Asunto(s)
Ácido Acético/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Anión Orgánico/genética , Ácido Succínico/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Cinética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/metabolismo , Mutagénesis Sitio-Dirigida , Transportadores de Anión Orgánico/metabolismo , Especificidad por Sustrato
13.
J Bioenerg Biomembr ; 44(1): 127-39, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22407107

RESUMEN

Monocarboxylate transporters (MCTs) belong to the SLC16 gene family, presently composed by 14 members. MCT1-MCT4 are proton symporters, which mediate the transmembrane transport of pyruvate, lactate and ketone bodies. The role of MCTs in cell homeostasis has been characterized in detail in normal tissues, however, their role in cancer is still far from understood. Most solid tumors are known to rely on glycolysis for energy production and this activity leads to production of important amounts of lactate, which are exported into the extracellular milieu, contributing to the acidic microenvironment. In this context, MCTs will play a dual role in the maintenance of the hyper-glycolytic acid-resistant phenotype of cancer, allowing the maintenance of the high glycolytic rates by performing lactate efflux, and pH regulation by the co-transport of protons. Thus, they constitute attractive targets for cancer therapy, which have been little explored. Here we review the literature on the role of MCTs in solid tumors in different locations, such as colon, central nervous system, breast, lung, gynecologic tract, prostate, stomach, however, there are many conflicting results and in most cases there are no functional studies showing the dependence of the tumors on MCT expression and activity. Additional studies on MCT expression in other tumor types, confirmation of the results already published as well as additional functional studies are needed to deeply understand the role of MCTs in cancer maintenance and aggressiveness.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiología , Familia de Multigenes/fisiología , Neoplasias/metabolismo , Simportadores/metabolismo , Simportadores/fisiología , Secuencia de Aminoácidos , Animales , Glucólisis , Humanos , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Familia de Multigenes/genética , Filogenia , Especificidad de la Especie , Simportadores/genética
14.
J Bioenerg Biomembr ; 44(1): 141-53, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22350013

RESUMEN

Most malignant tumors exhibit the Warburg effect, which consists in increased glycolysis rates with production of lactate, even in the presence of oxygen. Monocarboxylate transporters (MCTs), maintain these glycolytic rates, by mediating the influx and/or efflux of lactate and are overexpressed in several cancer cell types. The lactate and pyruvate analogue 3-bromopyruvate (3-BP) is an inhibitor of the energy metabolism, which has been proposed as a specific antitumor agent. In the present study, we aimed at determining the effect of 3-BP in breast cancer cells and evaluated the putative role of MCTs on this effect. Our results showed that the three breast cancer cell lines used presented different sensitivities to 3-BP: ZR-75-1 ER (+)>MCF-7 ER (+)>SK-BR-3 ER (-). We also demonstrated that 3-BP reduced lactate production, induced cell morphological alterations and increased apoptosis. The effect of 3-BP appears to be cytotoxic rather than cytostatic, as a continued decrease in cell viability was observed after removal of 3-BP. We showed that pre-incubation with butyrate enhanced significantly 3-BP cytotoxicity, especially in the most resistant breast cancer cell line, SK-BR-3. We observed that butyrate treatment induced localization of MCT1 in the plasma membrane as well as overexpression of MCT4 and its chaperone CD147. Our results thus indicate that butyrate pre-treatment potentiates the effect of 3-BP, most probably by increasing the rates of 3-BP transport through MCT1/4. This study supports the potential use of butyrate as adjuvant of 3-BP in the treatment of breast cancer resistant cells, namely ER (-).


Asunto(s)
Antineoplásicos Alquilantes/metabolismo , Neoplasias de la Mama/metabolismo , Butiratos/farmacología , Regulación Neoplásica de la Expresión Génica/fisiología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piruvatos/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Butiratos/metabolismo , Butiratos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioterapia Adyuvante/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ácido Láctico/antagonistas & inhibidores , Piruvatos/farmacología , Piruvatos/uso terapéutico , Sales de Tetrazolio , Tiazoles
15.
J Bioenerg Biomembr ; 44(1): 155-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359102

RESUMEN

We have investigated the cytotoxicity in Saccharomyces cerevisiae of the novel antitumor agent 3-bromopyruvate (3-BP). 3-BP enters the yeast cells through the lactate/pyruvate H(+) symporter Jen1p and inhibits cell growth at minimal inhibitory concentration of 1.8 mM when grown on non-glucose conditions. It is not submitted to the efflux pumps conferring Pleiotropic Drug Resistance in yeast. Yeast growth is more sensitive to 3-BP than Gleevec (Imatinib methanesulfonate) which in contrast to 3-BP is submitted to the PDR network of efflux pumps. The sensitivity of yeast to 3-BP is increased considerably by mutations or chemical treatment by buthionine sulfoximine that decrease the intracellular concentration of glutathione.


Asunto(s)
Antineoplásicos Alquilantes/farmacocinética , Antineoplásicos Alquilantes/toxicidad , Piruvatos/farmacocinética , Piruvatos/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Antineoplásicos Alquilantes/metabolismo , Butionina Sulfoximina/farmacología , Glutatión/metabolismo , Pruebas de Sensibilidad Microbiana , Transportadores de Ácidos Monocarboxílicos/metabolismo , Piruvatos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
16.
Mol Microbiol ; 75(6): 1337-54, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19968788

RESUMEN

The major fungal pathogen Candida albicans has the metabolic flexibility to assimilate a wide range of nutrients in its human host. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources contributes to its virulence. JEN1 encodes a monocarboxylate transporter in C. albicans and we show that its paralogue, JEN2, encodes a novel dicarboxylate plasma membrane transporter, subjected to glucose repression. A strain deleted in both genes lost the ability to transport lactic, malic and succinic acids by a mediated mechanism and it displayed a growth defect on these substrates. Although no significant morphogenetic or virulence defects were found in the double mutant strain, both JEN1 and JEN2 were strongly induced during infection. Jen1-GFP (green fluorescent protein) and Jen2-GFP were upregulated following the phagocytosis of C. albicans cells by neutrophils and macrophages, displaying similar behaviour to an Icl1-GFP fusion. In the murine model of systemic candidiasis approximately 20-25% of C. albicans cells infecting the kidney expressed Jen1-GFP and Jen2-GFP. Our data suggest that Jen1 and Jen2 are expressed in glucose-poor niches within the host, and that these short-chain carboxylic acid transporters may be important in the early stages of infection.


Asunto(s)
Candida albicans/enzimología , Ácidos Carboxílicos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Fusión Artificial Génica , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Proteínas Fúngicas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Macrófagos/microbiología , Proteínas de Transporte de Membrana/genética , Ratones , Neutrófilos/microbiología , Fagocitosis , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA