Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Annu Rev Pharmacol Toxicol ; 57: 309-327, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28061690

RESUMEN

Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate γ-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.


Asunto(s)
Insecticidas/toxicidad , Exposición Profesional/prevención & control , Intoxicación por Organofosfatos/prevención & control , Xenobióticos/toxicidad , Animales , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/uso terapéutico , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/toxicidad , Humanos , Insecticidas/química , Insecticidas/metabolismo , Intoxicación por Organofosfatos/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo
2.
J Agric Food Chem ; 64(22): 4471-7, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27192487

RESUMEN

Pesticides provide a fascinating combination of substituents not present in other environmental chemicals, leading to unexpected metabolites and toxicological effects in pests, mammals, and other organisms. The parent compound and/or metabolites of some pesticides have multiple targets, requiring identification of the causal agents and their modes of action. This review considers a few of the author's observations in the past six decades, some solved and others still puzzling. It illustrates that a new substituent combination not only confers specific chemical and physical properties to a class of compounds but often yields metabolites with a surprising variety of biological activities. Examples considered include proinsecticides, procyclic phosphates, CYP inhibitors as synergists, thiocarbamate sulfoxides, promutagens, carcinogens, and hepatotoxins, and stress tolerance inducers in plants. Although the discoveries considered are based on pesticide toxicology, they are broadly applicable to environmental toxicology and xenobiotics in animals, plants, and microorganisms.


Asunto(s)
Plaguicidas/metabolismo , Plaguicidas/toxicidad , Animales , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/toxicidad , Humanos , Estructura Molecular , Plaguicidas/química
3.
Chem Res Toxicol ; 27(8): 1359-61, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25045800

RESUMEN

The dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is detoxified mainly by aldehyde dehydrogenase (ALDH). We find that the fungicide benomyl potently and rapidly inhibits ALDH and builds up DOPAL in vivo in mouse striatum and in vitro in PC12 cells and human cultured fibroblasts and glial cells. The in vivo results resemble those noted previously with knockouts of the genes encoding ALDH1A1 and 2, a mouse model of aging-related Parkinson's disease (PD). Exposure to pesticides that inhibit ALDH may therefore increase PD risk via DOPAL buildup. This study lends support to the "catecholaldehyde hypothesis" that the autotoxic dopamine metabolite DOPAL plays a pathogenic role in PD.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético/análogos & derivados , Aldehído Deshidrogenasa/metabolismo , Antifúngicos/metabolismo , Benomilo/metabolismo , Enfermedad de Parkinson/etiología , Ácido 3,4-Dihidroxifenilacético/química , Ácido 3,4-Dihidroxifenilacético/metabolismo , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/genética , Aldehídos/química , Aldehídos/toxicidad , Animales , Antifúngicos/química , Antifúngicos/toxicidad , Benomilo/química , Benomilo/toxicidad , Línea Celular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Células PC12 , Ratas
4.
Toxicol Lett ; 216(2-3): 139-45, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23220038

RESUMEN

Thiamethoxam (TMX), an important insecticide, is hepatotoxic and hepatocarcinogenic in mice but not rats. Studies of Syngenta Central Toxicology Laboratory on species specificity in metabolism established that TMX is a much better substrate for mouse liver microsomal CYPs than the corresponding rat or human enzymes in forming desmethyl-TMX (dm-TMX), which is also hepatotoxic, and clothianidin (CLO), which is not hepatotoxic or hepatocarcinogenic. They proposed that TMX hepatotoxicity/hepatocarcinogencity is due to dm-TMX and a further metabolite desmethyl-CLO (dm-CLO) (structurally analogous to a standard inducible nitric oxide synthase inhibitor) acting synergistically. The present study considers formation of formaldehyde (HCHO) and N-methylol intermediates as an alternative mechanism of TMX hepatotoxicity/hepatocarcinogenicity. Comparison of neonicotinoid metabolism by mouse, rat and human microsomes with NADPH showed two important points. First, TMX and dm-TMX yield more HCHO than any other commercial neonicotinoid. Second, mouse microsomes give much higher conversion than rat or human microsomes. These observations provide an alternative hypothesis of HCHO and N-methylol intermediates from CYP-mediated oxidative oxadiazinane ring cleavage as the bioactivated hepatotoxicants. However, the proposed mono-N-methylol CYP metabolites are not observed, possibly further reacting in situ.


Asunto(s)
Formaldehído/farmacocinética , Hígado/metabolismo , Nitrocompuestos/farmacocinética , Nitrocompuestos/toxicidad , Oxazinas/farmacocinética , Oxazinas/toxicidad , Plaguicidas/farmacocinética , Plaguicidas/toxicidad , Tiazoles/farmacocinética , Tiazoles/toxicidad , Animales , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A , Humanos , Hígado/enzimología , Masculino , Ratones , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Neonicotinoides , Ratas , Especificidad de la Especie , Tiametoxam
5.
J Agric Food Chem ; 59(7): 2808-15, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21341672

RESUMEN

Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, a chemoproteomic platform, termed activity-based protein profiling, was used to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in the degradation of endocannabinoid signaling lipids, monoacylglycerol lipase, and fatty acid amide hydrolase were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants.


Asunto(s)
Encéfalo/enzimología , Compuestos Organofosforados/farmacología , Plaguicidas/farmacología , Serina Endopeptidasas , Inhibidores de Serina Proteinasa/farmacología , Tiocarbamatos/farmacología , Amidohidrolasas/antagonistas & inhibidores , Animales , Moduladores de Receptores de Cannabinoides/metabolismo , Exposición a Riesgos Ambientales , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/antagonistas & inhibidores , Proteómica/métodos , Inhibidores de Serina Proteinasa/envenenamiento
6.
J Agric Food Chem ; 59(7): 2923-31, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-20731358

RESUMEN

Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.


Asunto(s)
Anabasina/agonistas , Insecticidas/metabolismo , Aldehído Oxidasa/metabolismo , Animales , Bacterias/enzimología , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/metabolismo , Imidazoles/metabolismo , Insectos/enzimología , Resistencia a los Insecticidas , Modelos Moleculares , Neonicotinoides , Nitrocompuestos/metabolismo , Receptores Nicotínicos
7.
J Agric Food Chem ; 57(11): 4861-6, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19391582

RESUMEN

Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19, and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19, and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than it does that of TMX. Imidacloprid (IMI), CLO, and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI, and 4-hydroxythiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid, and CLO metabolism in vivo in mice, elevating brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites.


Asunto(s)
Aldehído Oxidasa/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450 , Inhibidores Enzimáticos/farmacología , Insecticidas/metabolismo , Nitrocompuestos/metabolismo , Aldehído Oxidasa/química , Animales , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Imidazoles/química , Imidazoles/metabolismo , Insecticidas/química , Cinética , Masculino , Microsomas Hepáticos/química , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Neonicotinoides , Nitrocompuestos/química , Oxazinas/química , Oxazinas/metabolismo , Especificidad por Sustrato , Tiametoxam , Tiazoles/química , Tiazoles/metabolismo
8.
Acc Chem Res ; 42(2): 260-9, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19053239

RESUMEN

Until the mid-20th century, pest insect control in agriculture relied on largely inorganic and botanical insecticides, which were inadequate. Then, the remarkable insecticidal properties of several organochlorines, organophosphates, methylcarbamates, and pyrethroids were discovered, leading to an arsenal of synthetic organics. The effectiveness of these insecticides, however, diminished over time due to the emergence of resistant insect strains with less sensitive molecular targets in their nervous systems. This created a critical need for a new type of neuroactive insecticide with a different yet highly sensitive target. Nicotine in tobacco extract was for centuries the best available agent to prevent sucking insects from damaging crops, although this alkaloid was hazardous to people and not very effective. The search for unusual structures and optimization revealed a new class of potent insecticides, known as neonicotinoids, which are similar to nicotine in their structure and action as agonists of the nicotinic acetylcholine receptor (nAChR). Fortunately, neonicotinoids are much more toxic to insects than mammals due in large part to differences in their binding site interactions at the corresponding nAChRs. This Account discusses the progress that has been made in defining the structural basis of neonicotinoid and nicotinoid potency and selectivity. The findings are based on comparisons of two acetylcholine binding proteins (AChBPs) with distinct pharmacological profiles that serve as structural surrogates for the extracellular ligand-binding domain of the nAChRs. Saltwater mollusk (Aplysia californica) AChBP has high neonicotinoid sensitivity, whereas freshwater snail (Lymnaea stagnalis) AChBP has low neonicotinoid and high nicotinoid sensitivities, pharmacologies reminiscent of insect and vertebrate nAChR subtypes, respectively. The ligand-receptor interactions for these AChBPs were established by photoaffinity labeling and X-ray crystallography. Both azidopyridinyl neonicotinoid and nicotinoid photoprobes bind in a single conformation with Aplysia AChBP; this is consistent with high-resolution crystal structures. Surprisingly, though, the electronegative nitro or cyano moiety of the neonicotinoid faced in a reversed orientation relative to the cationic nicotinoid functionality. For the Lymnaea AChBP, the azidoneonicotinoid probes modified two distinct and distant sites, while the azidonicotinoid probes, surprisingly, derivatized only one point. This meant that the neonicotinoids have two bound conformations in the vertebrate receptor model, which are completely inverted relative to each other, whereas nicotinoids appear buried in only one conserved conformation. Therefore, the unique binding conformations of nicotinic agonists in these insect and vertebrate receptor homologues define the basis for molecular recognition of neonicotinoid insecticides as the determinants of life or death.


Asunto(s)
Insectos/efectos de los fármacos , Insecticidas/química , Insecticidas/farmacología , Agonistas Nicotínicos/química , Receptores Nicotínicos/química , Animales , Aplysia/efectos de los fármacos , Aplysia/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Insectos/química , Insecticidas/metabolismo , Lymnaea/efectos de los fármacos , Lymnaea/metabolismo , Estructura Molecular , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacología , Conformación Proteica , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Especificidad por Sustrato
9.
J Med Chem ; 51(14): 4213-8, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18570364

RESUMEN

Neonicotinoid agonists with a nitroimino or cyanoimino pharmacophore are the newest of the four most important classes of insecticides. Our studies on the nicotinic receptor structure in the neonicotinoid-bound state revealed a unique niche of about 6 A depth beyond the nitro oxygen or cyano nitrogen tip. The N-substituted imino pharmacophore was therefore extended to fill the gap. Excellent target site selectivity with high insecticidal activity and low toxicity to mammals were achieved rivaling those of the current neonicotinoid insecticides as illustrated here by 3-(6-chloropyridin-3-ylmethyl)-2-trifluoroacetyliminothiazoline and its pyrazinoylimino analogue.


Asunto(s)
Insecticidas/farmacología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Animales , Sitios de Unión , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 105(21): 7606-11, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18477694

RESUMEN

Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 A in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.


Asunto(s)
Aplysia , Agonistas Nicotínicos/química , Receptores Nicotínicos/química , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cristalografía por Rayos X , Imidazoles/química , Imidazoles/farmacología , Imidazolinas/química , Imidazolinas/metabolismo , Imidazolinas/farmacología , Cinética , Ligandos , Neonicotinoides , Nicotina/química , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Nitrocompuestos/química , Nitrocompuestos/farmacología , Conformación Proteica , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Tiazinas/química , Tiazinas/farmacología
11.
Chem Biol Interact ; 175(1-3): 355-64, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18495101

RESUMEN

Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.


Asunto(s)
Encéfalo/efectos de los fármacos , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Lipasa/metabolismo , Lisofosfolípidos/metabolismo , Organofosfatos/farmacología , Éteres Fosfolípidos/metabolismo , Animales , Encéfalo/metabolismo , Humanos
12.
Toxicol Appl Pharmacol ; 228(1): 42-8, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18164358

RESUMEN

Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC50 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although there was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.


Asunto(s)
Encéfalo/enzimología , Inactivación Metabólica/genética , Metabolismo de los Lípidos/genética , Organofosfatos/toxicidad , Serina Endopeptidasas/genética , Serina Endopeptidasas/fisiología , Acetilcolinesterasa/metabolismo , Animales , Cloropirifos/toxicidad , Inhibidores Enzimáticos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Insecticidas/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/enzimología , Organofosfatos/metabolismo , Paratión/toxicidad , Factor de Activación Plaquetaria/metabolismo , Serina Proteasas , Esterol Esterasa , Distribución Tisular
13.
Chem Res Toxicol ; 20(8): 1211-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17645302

RESUMEN

Pesticide detoxification is a central feature of selective toxicity and safety evaluation. Two of the principal enzymes involved are GSH S-transferases (GSTs) and cytochrome P450s acting alone and together. More than 100 pesticides are organophosphorus (OP) compounds, but with few exceptions, their GSH conjugates have not been directly observed in vitro or in vivo. The major insecticides chlorpyrifos (CP) and diazinon are of particular interest as multifunctional substrates with diverse metabolites, while ClP(S)(OEt) 2 and the cotton defoliant tribufos are possible precursors of phosphorylated GSH conjugates. Formation of GSH conjugates by GST with GSH was studied in vitro with and without metabolic activation by human liver microsomes or P450 3A4 with NADPH. Metabolites were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Five GSH conjugates were identified from CP and chlorpyrifos oxon (CPO), i.e., GSCP and GSCPO in which the 6-chloro substituent of CP and CPO, respectively, is displaced by GSH; S-(3,5,6-trichloropyridin-2-yl)glutathione; S-(3,5-dichloro-6-hydroxypyridin-2-yl)glutathione; and S-ethylglutathione. GST of a human liver microsomal preparation but not P450 3A4 with GSH metabolized CP to GSCP. With GST and GSH, diazinon and diazoxon gave S-(2-isopropyl-4-methylpyrimidin-6-yl)glutathione and ClP(S)(OEt) 2 yielded GSP(S)(OEt) 2. With microsomes, NADPH, GST, and GSH tribufos gave GSP(O)(SBu) 2. The liver of intraperitoneally treated mice contained GSCP from CP, GSP(S)(OEt) 2 from ClP(S)(OEt) 2, and GSP(O)(SBu) 2 from tribufos. GSP(S)(OEt) 2 and GSP(O)(SBu) 2 are the first S-phosphoglutathione metabolites observed in vitro and in vivo directly by LC-ESI-MS. Nine other OP pesticides gave only O-dealkylation in the GST/GSH system. GST-catalyzed metabolism joins P450s and hydrolases as important contributors to OP detoxification.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Inactivación Metabólica , Compuestos Organofosforados/metabolismo , Plaguicidas/metabolismo , Animales , Cloropirifos/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/química , Defoliantes Químicos/química , Defoliantes Químicos/metabolismo , Defoliantes Químicos/toxicidad , Diazinón/química , Diazinón/metabolismo , Diazinón/toxicidad , Glutatión/análogos & derivados , Glutatión Transferasa/química , Humanos , Hidrolasas/metabolismo , Hígado/enzimología , Ratones , Microsomas/enzimología , NADP/metabolismo , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad , Plaguicidas/química , Plaguicidas/toxicidad , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato , Factores de Tiempo
14.
Proc Natl Acad Sci U S A ; 104(21): 9075-80, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17485662

RESUMEN

Two types of structurally similar nicotinic agonists have very different biological and physicochemical properties. Neonicotinoids, important insecticides including imidacloprid and thiacloprid, are nonprotonated and selective for insects and their nicotinic receptors, whereas nicotinoids such as nicotine and epibatidine are cationic and selective for mammalian systems. We discovered that a mollusk acetylcholine binding protein (AChBP), as a structural surrogate for the extracellular ligand-binding domain of the nicotinic receptor, is similarly sensitive to neonicotinoids and nicotinoids. It therefore seemed possible that the proposed very different interactions of the neonicotinoids and nicotinoids might be examined with a single AChBP by using optimized azidochloropyridinyl photoaffinity probes. Two azidoneonicotinoids with a nitro or cyano group were compared with the corresponding desnitro or descyano azidonicotinoids. The four photoactivated nitrene probes modified AChBP with up to one agonist for each subunit based on analysis of the intact derivatized protein. Identical modification sites were observed by collision-induced dissociation analysis for the neonicotinoids and nicotinoids with similar labeling frequency of Tyr-195 of loop C and Met-116 of loop E at the subunit interface. The nitro- or cyano-substituted guanidine/amidine planes of the neonicotinoids provide a unique electronic conjugation system to interact with loop C Tyr-188. The neonicotinoid nitro oxygen and cyano nitrogen contact loop C Cys-190/Ser-189, whereas the cationic head of the corresponding nicotinoids is inverted for hydrogen-bonding and cation-pi contact with Trp-147 and Tyr-93. These structural models based on AChBP directly map the elusive neonicotinoid binding site and further describe the molecular determinants of agonists on nicotinic receptors.


Asunto(s)
Nicotina/análogos & derivados , Nicotina/metabolismo , Animales , Aplysia/efectos de los fármacos , Aplysia/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Línea Celular , Humanos , Espectrometría de Masas , Modelos Moleculares , Estructura Molecular , Nicotina/química , Nicotina/farmacología , Etiquetas de Fotoafinidad
15.
Chem Res Toxicol ; 19(9): 1142-50, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16978018

RESUMEN

Serine hydrolase KIAA1363 is highly expressed in invasive cancer cells and is the major protein in mouse brain diethylphosphorylated by and hydrolyzing low levels of chlorpyrifos oxon (CPO) (the activated metabolite of a major insecticide). It is also the primary CPO-hydrolyzing enzyme in spinal cord, kidney, heart, lung, testis, and muscle but not liver, a pattern of tissue expression confirmed by fluorophosphonate-rhodamine labeling. KIAA1363 gene deletion using homologous recombination reduces CPO binding, hydrolysis, and metabolism 3-29-fold on incubation with brain membranes and homogenates determined with 1 nM [(3)H-ethyl]CPO and the inhibitory potency for residual CPO with butyrylcholinesterase as a biomarker. Studies with knockout mice further show that KIAA1363 partially protects brain AChE and monoacylglycerol lipase from CPO-induced in vivo inhibition. Surprisingly, mouse brain KIAA1363 and AChE are similar in in vitro sensitivity to seven methyl, ethyl, and propyl but not higher alkyl OP insecticides and analogues, prompting structural comparisons of the active sites of KIAA1363 and AChE relative to OP potency and selectivity. Homology modeling based largely on the Archaeoglobus fulgidus esterase crystal structure indicates that KIAA1363 has a catalytic triad of S191, D348, and H378, a GDSAG motif, and an oxyanion hole of H113, G114, G115, and G116. Excellent selectivity for KIAA1363 is achieved on OP structure optimization with long alkyl chain substituents suggesting that KIAA1363 has larger acyl and leaving group pockets than those of AChE. KIAA1363 reactivates faster than AChE presumably due to differences in the uncoupling of the catalytic triad His upon phosphorylation. The structural modeling of KIAA1363 helps us understand OP structure-activity relationships and the toxicological relevance of this detoxifying enzyme.


Asunto(s)
Cloropirifos/análogos & derivados , Compuestos Organofosforados/toxicidad , Serina Endopeptidasas/metabolismo , Animales , Sitios de Unión , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Compuestos Organofosforados/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Proteasas , Inhibidores de Serina Proteinasa , Esterol Esterasa
16.
J Agric Food Chem ; 54(9): 3365-71, 2006 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-16637697

RESUMEN

The diversity of neonicotinoid insecticides acting as insect nicotinic acetylcholine (ACh) receptor (nAChR) agonists is illustrated by imidacloprid (IMI) with chloropyridinylmethyl (CPM) and N-nitroimine substituents, dinotefuran (DIN) with tetrahydrofurylmethyl (TFM) and N-nitroimine moieties, and acetamiprid (ACE) with CPM and N-cyanoimine groups. These three neonicotinoids are used here as radioligands to test the hypothesis that they all bind to the same site in the same way in both fruit flies (Drosophila melanogaster) and a leafhopper pest (Homalodisca coagulata): that is, neonicotinoid binding site specificity is conserved in the insect nAChRs. Multiple approaches show that [3H]IMI and [3H]ACE interact with an identical site in both species. However, although [3H]DIN binds with high affinity in both insects, its pharmacological profile in Homalodisca is surprisingly unique, with high sensitivity to some TFM-containing compounds and ACh. The TFM moiety of DIN may bind in a different orientation compared to the CPM group of IMI and ACE.


Asunto(s)
Drosophila melanogaster/metabolismo , Hemípteros/metabolismo , Insecticidas/metabolismo , Nicotina/agonistas , Receptores Nicotínicos/metabolismo , Animales , Sitios de Unión , Guanidinas/metabolismo , Imidazoles/metabolismo , Neonicotinoides , Nicotina/metabolismo , Nitrocompuestos/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes , Especificidad de la Especie , Tritio
17.
Proc Natl Acad Sci U S A ; 103(13): 5185-90, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16537435

RESUMEN

Several major insecticides, including alpha-endosulfan, lindane, and fipronil, and the botanical picrotoxinin are noncompetitive antagonists (NCAs) for the GABA receptor. We showed earlier that human beta(3) homopentameric GABA(A) receptor recognizes all of the important GABAergic insecticides and reproduces the high insecticide sensitivity and structure-activity relationships of the native insect receptor. Despite large structural diversity, the NCAs are proposed to fit a single binding site in the chloride channel lumen lined by five transmembrane 2 segments. This hypothesis is examined with the beta(3) homopentamer by mutagenesis, pore structure studies, NCA binding, and molecular modeling. The 15 amino acids in the cytoplasmic half of the pore were mutated to cysteine, serine, or other residue for 22 mutants overall. Localization of A-1'C, A2'C, T6'C, and L9'C (index numbers for the transmembrane 2 region) in the channel lumen was established by disulfide cross-linking. Binding of two NCA radioligands [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane and [(3)H] 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile was dramatically reduced with 8 of the 15 mutated positions, focusing attention on A2', T6', and L9' as proposed binding sites, consistent with earlier mutagenesis studies. The cytoplasmic half of the beta3 homopentamer pore was modeled as an alpha-helix. The six NCAs listed above plus t-butylbicyclophosphorothionate fit the 2' to 9' pore region forming hydrogen bonds with the T6' hydroxyl and hydrophobic interactions with A2', T6', and L9' alkyl substituents, thereby blocking the channel. Thus, widely diverse NCA structures fit the same GABA receptor beta subunit site with important implications for insecticide cross-resistance and selective toxicity between insects and mammals.


Asunto(s)
Antagonistas del GABA/química , Antagonistas del GABA/metabolismo , Receptores de GABA/química , Receptores de GABA/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Drosophila , Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Nitrilos/metabolismo , Nitrilos/farmacología , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA/genética , Alineación de Secuencia , Relación Estructura-Actividad
18.
Toxicol Lett ; 161(2): 108-14, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16153789

RESUMEN

Two important enzymes in metabolism of the principal neo-nicotinoid insecticide imidacloprid are liver microsomal CYP3 A4 and cytosolic aldehyde oxidase (AOX). CYP3A4 oxidation at several molecular sites and AOX reduction at the nitro substituent result in either an increase (activation) or decrease (inactivation) of agonist potency at nicotinic acetylcholine receptors (nAChRs), both insect and vertebrate alpha 4beta 2. This study evaluates activation or inactivation of 11 neo-nicotinoids in a continuous two-step system coupling metabolism and receptor binding. For metabolism, the neo-nicotinoid is incubated with CYP3A4 and NADPH or AOX with the cosubstrate N-methyl-nicotinamide, terminating the reaction with ketoconazole or menadione, respectively, to inhibit further conversion. For receptor assay, either the Drosophila nAChR and [(3)H]imidacloprid or the alpha4 beta2 nicotinic receptor and [(3)H](-)-nicotine are added to determine changes in neo-nicotinoid potency. With the Drosophila nAChR assay, the N-methyl compounds N-methyl-imidacloprid and thiamethoxam are activated 4.5-29-fold by CYP3 A4 whereas nine other neo-nicotinoids are not changed in potency. With the vertebrate alpha4 beta2 nAChR, AOX enhances imidacloprid potency but CYP3 A4 does not. The AOX system coupled with the Drosophila receptor strongly inactivates clothianidin, dinotefuran, imidacloprid, desmethyl-thiamethoxam, and thiamethoxam with some inactivation of nitenpyram and nithiazine, and little or no effect on four other compounds.


Asunto(s)
Aldehído Oxidasa/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Nicotina/análogos & derivados , Nicotina/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Citocromos b5/metabolismo , Drosophila , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Activación Enzimática , Ratones , Modelos Químicos , Estructura Molecular
19.
Toxicol Sci ; 86(2): 291-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15888665

RESUMEN

Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Inhibidores de la Colinesterasa/toxicidad , Compuestos Organofosforados/toxicidad , Péptido Hidrolasas/sangre , Plaguicidas/toxicidad , Acetilcolinesterasa/metabolismo , Animales , Biomarcadores , Encéfalo/enzimología , Butirilcolinesterasa/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Eritrocitos/enzimología , Cobayas , Humanos , Masculino , Ratones , Péptido Hidrolasas/metabolismo , Activador de Tejido Plasminógeno/sangre , Activador de Tejido Plasminógeno/metabolismo
20.
Bioorg Med Chem Lett ; 15(4): 877-81, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15686879

RESUMEN

6'-Methylpyrido[3,4-b]norhomotropane [synthesis as the racemate reported here] is more potent at the alpha4beta2 nicotinic receptor than any previous bridged nicotinoid. The two nitrogens and 6'-methyl substituent are superimposable on the two nitrogens and 6-chloro substituent of epibatidine, with the best fit on comparing the chair conformer of the (1R)-pyridonorhomotropane with natural (1R)-epibatidine. In this pharmacophore model, the 6'-methyl substituent may be equivalent to the acetyl methyl of acetylcholine.


Asunto(s)
Piridinas/química , Piridinas/síntesis química , Receptores Nicotínicos/química , Tropanos/química , Tropanos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Modelos Moleculares , Conformación Molecular , Nicotina/análogos & derivados , Unión Proteica , Piridinas/farmacología , Relación Estructura-Actividad , Tropanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA