Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmaceutics ; 14(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890402

RESUMEN

Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.

2.
Dis Model Mech ; 15(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35466995

RESUMEN

Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.


Asunto(s)
Displasia Broncopulmonar , Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Displasia Broncopulmonar/tratamiento farmacológico , Desarrollo de Medicamentos , Enterocolitis Necrotizante/tratamiento farmacológico , Humanos , Recién Nacido , Enfermedades del Recién Nacido/tratamiento farmacológico
3.
Oxid Med Cell Longev ; 2021: 4293279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659632

RESUMEN

Bronchopulmonary dysplasia (BPD) is a complex condition frequently occurring in preterm newborns, and different animal models are currently used to mimic the pathophysiology of BPD. The comparability of animal models depends on the availability of quantitative data obtained by minimally biased methods. Therefore, the aim of this study was to provide the first design-based stereological analysis of the lungs in the hyperoxia-based model of BPD in the preterm rabbit. Rabbit pups were obtained on gestation day 28 (three days before term) by cesarean section and exposed to normoxic (21% O2, n = 8) or hyperoxic (95% O2, n = 8) conditions. After seven days of exposure, lung function testing was performed, and lungs were taken for stereological analysis. In addition, the ratio between pulmonary arterial acceleration and ejection time (PAAT/PAET) was measured. Inspiratory capacity and static compliance were reduced whereas tissue elastance and resistance were increased in hyperoxic animals compared with normoxic controls. Hyperoxic animals showed signs of pulmonary hypertension indicated by the decreased PAAT/PAET ratio. In hyperoxic animals, the number of alveoli and the alveolar surface area were reduced by one-third or by approximately 50% of control values, respectively. However, neither the mean linear intercept length nor the mean alveolar volume was significantly different between both groups. Hyperoxic pups had thickened alveolar septa and intra-alveolar accumulation of edema fluid and inflammatory cells. Nonparenchymal blood vessels had thickened walls, enlarged perivascular space, and smaller lumen in hyperoxic rabbits in comparison with normoxic ones. In conclusion, the findings are in line with the pathological features of human BPD. The stereological data may serve as a reference to compare this model with BPD models in other species or future therapeutic interventions.


Asunto(s)
Displasia Broncopulmonar/patología , Hiperoxia/patología , Pulmón/patología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Conejos
4.
J Appl Physiol (1985) ; 131(3): 895-904, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34292788

RESUMEN

Evolving bronchopulmonary dysplasia (BPD) is characterized by impaired alveolarization leading to lung aeration inhomogeneities. Hyperoxia-exposed preterm rabbits have been proposed to mimic evolving BPD; therefore, we aimed to verify if this model has the same lung ultrasound and mechanical features of evolving BPD in human neonates. Semiquantitative lung ultrasound and lung mechanics measurement was performed in 25 preterm rabbits (28 days of gestation) and 25 neonates (mean gestational age ≈ 26 wk) with evolving BPD. A modified rabbit lung ultrasound score (rLUS) and a validated neonatal lung ultrasound score (LUS) were used. Lung ultrasound images were recorded and evaluated by two independent observers blinded to each other's evaluation. Lung ultrasound findings were equally heterogeneous both in rabbits as in human neonates and encompassed all the classical lung ultrasound semiology. Lung ultrasound and histology examination were also performed in 13 term rabbits kept under normoxia as further control and showed the absence of ultrasound and histology abnormalities compared with hyperoxia-exposed preterm rabbits. The interrater absolute agreement for the evaluation of lung ultrasound images in rabbits was very high [ICC: 0.989 (95%CI: 0.975-0.995); P < 0.0001], and there was no difference between the two observers. Lung mechanics parameters were similarly altered in both rabbits and human neonates. There were moderately significant correlations between airway resistances and lung ultrasound scores in rabbits (ρ = 0.519; P = 0.008) and in neonates (ρ = 0.409; P = 0.042). In conclusion, the preterm rabbit model fairly reproduces the lung ultrasound and mechanical characteristics of preterm neonates with evolving BPD.NEW & NOTEWORTHY We have reported that hyperoxia-exposed preterm rabbits and human preterm neonates with evolving BPD have the same lung ultrasound appearance, and that lung ultrasound can be fruitfully applied on this model with a brief training. The animal model and human neonates also presented the same relationship between semiquantitative ultrasound-assessed lung aeration and airway resistances. In conclusion, this animal model fairly reproduce evolving BPD as it is seen in clinical practice.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/diagnóstico por imagen , Modelos Animales de Enfermedad , Humanos , Hiperoxia/diagnóstico por imagen , Recién Nacido , Pulmón/diagnóstico por imagen , Conejos , Mecánica Respiratoria
5.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L949-L956, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32903026

RESUMEN

Recent clinical trials have shown improvements in neonatal outcomes after intratracheal administration of a combination of budesonide/surfactant (ITBS) in infants at risk of bronchopulmonary dysplasia. However, the effect of ITBS on lung function and alveolar structure is not known. We aimed to determine the effect of ITBS on lung function, parenchymal structure, and inflammatory cytokine expression in a relevant preterm animal model for bronchopulmonary dysplasia. Premature neonatal rabbits were administered a single dose of ITBS on the day of delivery and exposed to 95% oxygen. Following 7 days of hyperoxia, in vivo forced oscillation and pressure-volume maneuvers were performed to examine pulmonary function. Histological and molecular analysis was performed to assess alveolar and extracellular matrix (ECM) morphology, along with gene expression of connective tissue growth factor (CTGF), IL-8, and CCL-2. ITBS attenuated the functional effect of hyperoxia-induced lung injury and limited the change to respiratory system impedance, measured using the forced oscillation technique. Treatment effects were most obvious in the small airways, with significant effects on small airway resistance and small airway reactance. In addition, ITBS mitigated the decrease in inspiratory capacity and static compliance. ITBS restricted alveolar septal thickening without altering the mean linear intercept and mitigated hyperoxia-induced remodeling of the ECM. These structural changes were associated with improved inspiratory capacity and lung compliance. Gene expression of CTGF, IL-8, and CCL-2 was significantly downregulated in the lung. Treatment with ITBS shortly after delivery attenuated the functional and structural consequences of hyperoxia-induced lung injury to day 7 of life in the preterm rabbit.


Asunto(s)
Budesonida/farmacología , Hiperoxia/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Tensoactivos/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Surfactantes Pulmonares/farmacología , Conejos
6.
Am J Physiol Lung Cell Mol Physiol ; 316(4): L589-L597, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675804

RESUMEN

Recent clinical trials in newborns have successfully used surfactant as a drug carrier for an active compound, to minimize systemic exposure. To investigate the translational potential of surfactant-compound mixtures and other local therapeutics, a relevant animal model is required in which intratracheal administration for maximal local deposition is technically possible and well tolerated. Preterm rabbit pups (born at 28 days of gestation) were exposed to either hyperoxia or normoxia and randomized to receive daily intratracheal surfactant, daily intratracheal saline, or no injections for 7 days. At day 7, the overall lung function and morphology were assessed. Efficacy in terms of distribution was assessed by micro-PET-CT on both day 0 and day 7. Lung function as well as parenchymal and vascular structure were altered by hyperoxia, thereby reproducing a phenotype reminiscent of bronchopulmonary dysplasia (BPD). Neither intratracheal surfactant nor saline affected the survival or the hyperoxia-induced BPD phenotype of the pups. Using PET-CT, we demonstrate that 82.5% of the injected radioactive tracer goes and remains in the lungs, with a decrease of only 4% after 150 min. Surfactant and saline can safely and effectively be administered in spontaneously breathing preterm rabbits. The described model and method enable researchers to evaluate intratracheal pharmacological interventions for the treatment of BPD.


Asunto(s)
Displasia Broncopulmonar/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Surfactantes Pulmonares/administración & dosificación , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/diagnóstico por imagen , Displasia Broncopulmonar/fisiopatología , Modelos Animales de Enfermedad , Estudios de Factibilidad , Femenino , Humanos , Recién Nacido , Inyecciones , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Embarazo , Nacimiento Prematuro , Surfactantes Pulmonares/farmacocinética , Conejos , Tráquea , Resultado del Tratamiento
7.
PLoS Pathog ; 14(8): e1007209, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080893

RESUMEN

Oncolytic herpes simplex viruses (oHSVs) showed efficacy in clinical trials and practice. Most of them gain cancer-specificity from deletions/mutations in genes that counteract the host response, and grow selectively in cancer cells defective in anti-viral response. Because of the deletions/mutations, they are frequently attenuated or over-attenuated. We developed next-generation oHSVs, which carry no deletion/mutation, gain cancer-specificity from specific retargeting to tumor cell receptors-e.g. HER2 (human epidermal growth factor receptor 2)-hence are fully-virulent in the targeted cancer cells. The type of immunotherapy they elicit was not predictable, since non-attenuated HSVs induce and then dampen the innate response, whereas deleted/attenuated viruses fail to contrast it, and since the retargeted oHSVs replicate efficiently in tumor cells, but spare other cells in the tumor. We report on the first efficacy study of HER2-retargeted, fully-virulent oHSVs in immunocompetent mice. Their safety profile was very high. Both the unarmed R-LM113 and the IL-12-armed R-115 inhibited the growth of the primary HER2-Lewis lung carcinoma-1 (HER2-LLC1) tumor, R-115 being constantly more efficacious. All the mice that did not die because of the primary treated tumors, were protected from the growth of contralateral untreated tumors. The long-term survivors were protected from a second contralateral tumor, providing additional evidence for an abscopal immunotherapeutic effect. Analysis of the local response highlighted that particularly R-115 unleashed the immunosuppressive tumor microenvironment, i.e. induced immunomodulatory cytokines, including IFNγ, T-bet which promoted Th1 polarization. Some of the tumor infiltrating cells, e.g. CD4+, CD335+ cells were increased in the tumors of all responders mice, irrespective of which virus was employed, whereas CD8+, Foxp3+, CD141+ were increased and CD11b+ cells were decreased preferentially in R-115-treated mice. The durable response included a breakage of tolerance towards both HER2 and the wt tumor cells, and underscored a systemic immunotherapeutic vaccine response.


Asunto(s)
Antineoplásicos/farmacología , Vacunas contra el Cáncer/farmacología , Inmunoterapia Activa/métodos , Interleucina-12 , Viroterapia Oncolítica/métodos , Simplexvirus , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Ratones , Virus Oncolíticos
8.
J Virol ; 91(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250120

RESUMEN

The oncolytic herpes simplex virus (HSV) that has been approved for clinical practice and those HSVs in clinical trials are attenuated viruses, often with the neurovirulence gene γ134.5 and additional genes deleted. One strategy to engineer nonattenuated oncolytic HSVs consists of retargeting the viral tropism to a cancer-specific receptor of choice, exemplified by HER2 (human epidermal growth factor receptor 2), which is present in breast, ovary, and other cancers, and in detargeting from the natural receptors. Because the HER2-retargeted HSVs strictly depend on this receptor for infection, the viruses employed in preclinical studies were cultivated in HER2-positive cancer cells. The production of clinical-grade viruses destined for humans should avoid the use of cancer cells. Here, we engineered the R-213 recombinant, by insertion of a 20-amino-acid (aa) short peptide (named GCN4) in the gH of R-LM113; this recombinant was retargeted to HER2 through insertion in gD of a single-chain antibody (scFv) to HER2. Next, we generated a Vero cell line expressing an artificial receptor (GCN4R) whose N terminus consists of an scFv to GCN4 and therefore is capable of interacting with GCN4 present in gH of R-213. R-213 replicated as well as R-LM113 in SK-OV-3 cells, implying that addition of the GCN4 peptide was not detrimental to gH. R-213 grew to relatively high titers in Vero-GCN4R cells, efficiently spread from cell to cell, and killed both Vero-GCN4R and SK-OV-3 cells, as expected for an oncolytic virus. Altogether, Vero-GCN4R cells represent an efficient system for cultivation of retargeted oncolytic HSVs in non-cancer cells.IMPORTANCE There is growing interest in viruses as oncolytic agents, which can be administered in combination with immunotherapeutic compounds, including immune checkpoint inhibitors. The oncolytic HSV approved for clinical practice and those in clinical trials are attenuated viruses. An alternative to attenuation is a cancer specificity achieved by tropism retargeting to selected cancer receptors. However, the retargeted oncolytic HSVs strictly depend on cancer receptors for infection. Here, we devised a strategy for in vitro cultivation of retargeted HSVs in non-cancer cells. The strategy envisions a double-retargeting approach: one retargeting is via gD to the cancer receptor, and the second retargeting is via gH to an artificial receptor expressed in Vero cells. The double-retargeted HSV uses alternatively the two receptors to infect cancer cells or producer cells. A universal non-cancer cell line for growth of clinical-grade retargeted HSVs represents a step forward in the translational phase.


Asunto(s)
Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/genética , Receptor ErbB-2/genética , Simplexvirus/crecimiento & desarrollo , Cultivo de Virus/métodos , Animales , Línea Celular , Chlorocebus aethiops , Ingeniería Genética/métodos , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Humanos , Viroterapia Oncolítica , Virus Oncolíticos/metabolismo , Receptor ErbB-2/química , Simplexvirus/genética , Simplexvirus/metabolismo , Células Vero , Tropismo Viral
9.
Viruses ; 8(3): 63, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26927159

RESUMEN

Most of the oncolytic herpes simplex viruses (HSVs) exhibit a high safety profile achieved through attenuation. They carry defects in virulence proteins that antagonize host cell response to the virus, including innate response, apoptosis, authophagy, and depend on tumor cell proliferation. They grow robustly in cancer cells, provided that these are deficient in host cell responses, which is often the case. To overcome the attenuation limits, a strategy is to render the virus highly cancer-specific, e.g., by retargeting their tropism to cancer-specific receptors, and detargeting from natural receptors. The target we selected is HER-2, overexpressed in breast, ovarian and other cancers. Entry of wt-HSV requires the essential glycoproteins gD, gH/gL and gB. Here, we reviewed that oncolytic HSV retargeting was achieved through modifications in gD: the addition of a single-chain antibody (scFv) to HER-2 coupled with appropriate deletions to remove part of the natural receptors' binding sites. Recently, we showed that also gH/gL can be a retargeting tool. The insertion of an scFv to HER-2 at the gH N-terminus, coupled with deletions in gD, led to a recombinant capable to use HER-2 as the sole receptor. The retargeted oncolytic HSVs can be administered systemically by means of carrier cells-forcedly-infected mesenchymal stem cells. Altogether, the retargeted oncolytic HSVs are highly cancer-specific and their replication is not dependent on intrinsic defects of the tumor cells. They might be further modified to express immunomodulatory molecules.


Asunto(s)
Virus Oncolíticos/fisiología , Receptor ErbB-2/metabolismo , Receptores Virales/metabolismo , Simplexvirus/fisiología , Proteínas Estructurales Virales/metabolismo , Tropismo Viral , Virus Oncolíticos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simplexvirus/genética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/metabolismo , Proteínas Estructurales Virales/genética , Internalización del Virus
10.
J Virol ; 90(8): 4243-4248, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26842473

RESUMEN

We report that αvß3 integrin strongly affects the innate immune response in epithelial cells. αvß3 integrin greatly increased the response elicited via plasma membrane Toll-like receptors (TLRs) by herpes simplex virus or bacterial ligands. The endosomal TLR3, not the cytosolic sensor interferon gamma-inducible protein 16 (IFI16), was also boosted by αvß3 integrin. The boosting was exerted specifically by αvß3 integrin but not by αvß6 or αvß8 integrin. Current and previous work indicates that integrin-TLR cooperation occurs in epithelial and monocytic cells. The TLR response should be considered an integrin-TLR response.


Asunto(s)
Células Epiteliales/metabolismo , Integrina alfaVbeta3/metabolismo , Receptor Toll-Like 3/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Silenciador del Gen , Células HEK293 , Humanos , Inmunidad Innata , Integrina alfaVbeta3/genética , FN-kappa B/metabolismo , Transducción de Señal , Simplexvirus/metabolismo
11.
Sci Rep ; 5: 13995, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26356194

RESUMEN

Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS) by multiple groups working worldwide. Previously, we reported that when experimental autoimmune encephalomyelitis (EAE) was induced in mice latently infected with murine γ-herpesvirus 68 (γHV-68), the murine homolog to EBV, a disease more reminiscent of MS developed. Specifically, MS-like lesions developed in the brain that included equal numbers of IFN-γ producing CD4(+) and CD8(+) T cells and demyelination, none of which is observed in MOG induced EAE. Herein, we demonstrate that this enhanced disease was dependent on the γHV-68 latent life cycle and was associated with STAT1 and CD40 upregulation on uninfected dendritic cells. Importantly, we also show that, during viral latency, the frequency of regulatory T cells is reduced via a CD40 dependent mechanism and this contributes towards a strong T helper 1 response that resolves in severe EAE disease pathology. Latent γ-herpesvirus infection established a long-lasting impact that enhances subsequent adaptive autoimmune responses.


Asunto(s)
Autoinmunidad/genética , Antígenos CD40/genética , Expresión Génica , Esclerosis Múltiple/etiología , Rhadinovirus/fisiología , Latencia del Virus , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Infecciones por Herpesviridae/complicaciones , Infecciones por Herpesviridae/virología , Herpesvirus Humano 4/fisiología , Humanos , Inmunofenotipificación , Ratones , Esclerosis Múltiple/patología , Fenotipo , Factor de Transcripción STAT1/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Regulación hacia Arriba
12.
PLoS Pathog ; 8(5): e1002715, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615572

RESUMEN

Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases.


Asunto(s)
Encéfalo/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/virología , Rhadinovirus/patogenicidad , Médula Espinal/inmunología , Latencia del Virus , Animales , Encéfalo/patología , Encéfalo/virología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/patología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Herpesvirus Humano 4/patogenicidad , Interferón gamma/biosíntesis , Interleucina-17/biosíntesis , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Médula Espinal/patología , Médula Espinal/virología , Proteínas de Dominio T Box/biosíntesis , Células TH1/inmunología , Células Th17/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA