Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Breast Cancer Res ; 17: 78, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26040280

RESUMEN

INTRODUCTION: Breast tumors are comprised of distinct cancer cell populations which differ in their tumorigenic and metastatic capacity. Characterization of cell surface markers enables investigators to distinguish between cancer stem cells and their counterparts. CD24 is a well-known cell surface marker for mammary epithelial cells isolation, recently it was suggested as a potential prognostic marker in a wide variety of malignancies. Here, we demonstrate that CD24(+) cells create intra-tumor heterogeneity, and display highly metastatic properties. METHODS: The mammary carcinoma Mvt1 cells were sorted into CD24(-) and CD24(+) cells. Both subsets were morphologically and phenotypically characterized, and tumorigenic capacity was assessed via orthotopic inoculation of each subset into the mammary fat pad of wild-type and MKR mice. The metastatic capacity of each subset was determined with the tail vein metastasis assay. The role of CD24 in tumorigenesis was further examined with shRNA technology. GFP-labeled cells were monitored in vivo for differentiation. The genetic profile of each subset was analyzed using RNA sequencing. RESULTS: CD24(+) cells displayed a more spindle-like cytoplasm. The cells formed mammospheres in high efficiency and CD24(+) tumors displayed rapid growth in both WT and MKR mice, and were more metastatic than CD24- cells. Interestingly, CD24-KD in CD24+ cells had no effect both in vitro and in vivo on the various parameters studied. Moreover, CD24(+) cells gave rise in vivo to the CD24(-) that comprised the bulk of the tumor. RNA-seq analysis revealed enrichment of genes and pathways of the extracellular matrix in the CD24(+) cells. CONCLUSION: CD24(+) cells account for heterogeneity in mammary tumors. CD24 expression at early stages of the cancer process is an indication of a highly invasive tumor. However, CD24 is not a suitable therapeutic target; instead we suggest here new potential targets accounting for early differentiated cancer cells tumorigenic capacity.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antígeno CD24/metabolismo , Animales , Biomarcadores , Neoplasias de la Mama/genética , Antígeno CD24/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Inmunofenotipificación , Ratones , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Fenotipo , Carga Tumoral
2.
Endocr Relat Cancer ; 22(2): 145-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25694511

RESUMEN

Accumulating evidence from clinical trials indicates that specific targeting of the IGF1 receptor (IGF1R) is not efficient as an anti-breast cancer treatment. One possible reason is that the mitogenic signals from the insulin receptor (IR) can be processed independently or as compensation to inhibition of the IGF1R. In this study, we highlight the role of the IR in mediating breast tumor progression in both WT mice and a hyperinsulinemic MKR mouse model by induction of Ir (Insr) or Igf1r knockdown (KD) in the mammary carcinoma Mvt-1 cell line. By using the specific IR antagonist-S961, we demonstrated that Igf1r-KD induces elevated responses by the IR to IGF1. On the other hand, Ir-KD cells generated significantly smaller tumors in the mammary fat pads of both WT and MKR mice, as opposed to control cells, whereas the Igf1r-KD cells did not. The tumorigenic effects of insulin on the Mvt-1 cells were also demonstrated using microarray analysis, which indicates alteration of genes and signaling pathways involved in proliferation, the cell cycle, and apoptosis following insulin stimulation. In addition, the correlation between IR and the potential prognostic marker for aggressive breast cancer, CD24, was examined in the Ir-KD cells. Fluorescence-activated cell sorting (FACS) analysis revealed more than 60% reduction in CD24 expression in the Ir-KD cells when compared with the control cells. Our results also indicate that CD24-expressing cells can restore, at least in part, the tumorigenic capacity of Ir-KD cells. Taken together, our results highlight the mitogenic role of the IR in mammary tumor progression with a direct link to CD24 expression.


Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Receptor de Insulina/metabolismo , Animales , Antígeno CD24/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Insulina/farmacología , Neoplasias Mamarias Animales/patología , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Carga Tumoral
3.
Endocrinology ; 154(5): 1701-10, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23515289

RESUMEN

Epidemiological and experimental studies have identified hyperinsulinemia as an important risk factor for breast cancer induction and for the poor prognosis in breast cancer patients with obesity and type 2 diabetes. Recently it was demonstrated that both the insulin receptor (IR) and the IGF-IR mediate hyperinsulinemia's mitogenic effect in several breast cancer models. Although IGF-IR has been intensively investigated, and anti-IGF-IR therapies are now in advanced clinical trials, the role of the IR in mediating hyperinsulinemia's mitogenic effect remains to be clarified. Here we aimed to explore the potential of IR inhibition compared to dual IR/IGF-IR blockade on breast tumor growth. To initiate breast tumors, we inoculated the mammary carcinoma Mvt-1 cell line into the inguinal mammary fat pad of the hyperinsulinemic MKR female mice, and to study the role of IR, we treated the mice bearing tumors with the recently reported high-affinity IR antagonist-S961, in addition to the well-documented IGF-IR inhibitor picropodophyllin (PPP). Although reducing IR activation, with resultant severe hyperglycemia and hyperinsulinemia, S961-treated mice had significantly larger tumors compared to the vehicle-treated group. This effect maybe secondary to the severe hyperinsulinemia mediated via the IGF-1 receptor. In contrast, PPP by partially inhibiting both IR and IGF-IR activity reduced tumor growth rate with only mild metabolic consequences. We conclude that targeting (even partially) both IR and IGF-IRs impairs hyperinsulinemia's effects in breast tumor development while simultaneously sparing the metabolic abnormalities observed when targeting IR alone with virtual complete inhibition.


Asunto(s)
Neoplasias de la Mama/terapia , Carcinoma/terapia , Proliferación Celular/efectos de los fármacos , Hiperinsulinismo/tratamiento farmacológico , Insulina/efectos adversos , Terapia Molecular Dirigida/métodos , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma/complicaciones , Carcinoma/genética , Carcinoma/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Sustancias de Crecimiento/efectos adversos , Hiperinsulinismo/complicaciones , Hiperinsulinismo/genética , Hiperinsulinismo/patología , Neoplasias Mamarias Experimentales/complicaciones , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Transgénicos , Péptidos/uso terapéutico , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapéutico , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/genética , Terapias en Investigación/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA