Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Metab ; 6(6): 1178-1196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867022

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Masculino , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Dieta Occidental/efectos adversos , Estudios Retrospectivos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/etiología
2.
Adv Sci (Weinh) ; 7(24): 2002997, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344141

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can lead to irreversible liver cirrhosis and cancer. Early diagnosis of NASH is vital to detect disease before it becomes life-threatening, yet noninvasively differentiating NASH from simple steatosis is challenging. Herein, bifunctional probes have been developed that target the hepatocyte-specific asialoglycoprotein receptor (ASGPR), the expression of which decreases during NASH progression. The results show that the probes allow longitudinal, noninvasive monitoring of ASGPR levels by positron emission tomography in the newly developed rat model of NASH. The probes open new possibilities for research into early diagnosis of NASH and development of drugs to slow or reverse its progression.

3.
Hepatol Commun ; 4(7): 1056-1072, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32626837

RESUMEN

The worldwide obesity and type 2 diabetes epidemics have led to an increase in nonalcoholic fatty liver disease (NAFLD). NAFLD covers a spectrum of hepatic pathologies ranging from simple steatosis to nonalcoholic steatohepatitis, characterized by fibrosis and hepatic inflammation. Nonalcoholic steatohepatitis predisposes to the onset of hepatocellular carcinoma (HCC). Here, we characterized the effect of a pharmacological activator of the intracellular energy sensor adenosine monophosphate-activated protein kinase (AMPK) on NAFLD progression in a mouse model. The compound stimulated fat oxidation by activating AMPK in both liver and skeletal muscle, as revealed by indirect calorimetry. This translated into an ameliorated hepatic steatosis and reduced fibrosis progression in mice fed a diet high in fat, cholesterol, and fructose for 20 weeks. Feeding mice this diet for 80 weeks caused the onset of HCC. The administration of the AMPK activator for 12 weeks significantly reduced tumor incidence and size. Conclusion: Pharmacological activation of AMPK reduces NAFLD progression to HCC in preclinical models.

4.
Am J Physiol Endocrinol Metab ; 318(5): E590-E599, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31891536

RESUMEN

Besides a therapeutic target for type 2 diabetes, dipeptidyl peptidase 4 (DPP4) is an adipokine potentially upregulated in human obesity. We aimed to explore the role of adipocyte-derived DPP4 in diet-induced obesity and insulin resistance with an adipose tissue-specific knockout (AT-DPP4-KO) mouse. Wild-type and AT-DPP4-KO mice were fed for 24 wk with a high fat diet (HFD) and characterized for body weight, glucose tolerance, insulin sensitivity by hyperinsulinemic-euglycemic clamp, and body composition and hepatic fat content. Image and molecular biology analysis of inflammation, as well as adipokine secretion, was performed in AT by immunohistochemistry, Western blot, real-time-PCR, and ELISA. Incretin levels were determined by Luminex kits. Under HFD, AT-DPP4-KO displayed markedly reduced circulating DPP4 concentrations, proving AT as a relevant source. Independently of glucose-stimulated incretin hormones, AT-DPP4-KO had improved glucose tolerance and hepatic insulin sensitivity. AT-DPP4-KO displayed smaller adipocytes and increased anti-inflammatory markers. IGF binding protein 3 (IGFBP3) levels were lower in AT and serum, whereas free IGF1 was increased. The absence of adipose DPP4 triggers beneficial AT remodeling with decreased production of IGFBP3 during HFD, likely contributing to the observed, improved hepatic insulin sensitivity.


Asunto(s)
Tejido Adiposo/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Adipoquinas/metabolismo , Animales , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Dipeptidil Peptidasa 4/genética , Inmunohistoquímica , Insulina/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Obesidad/etiología , Obesidad/genética
5.
J Biol Chem ; 291(21): 11124-32, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27002145

RESUMEN

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid ß-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.


Asunto(s)
Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Leptina/metabolismo , Obesidad/etiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Eliminación de Gen , Hiperfagia/etiología , Hiperfagia/genética , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Mutación , Obesidad/genética , Obesidad/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal , Triglicéridos/metabolismo
6.
Physiol Behav ; 105(1): 52-61, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21554896

RESUMEN

Recent studies suggest that spontaneous physical activity (SPA) may be under the non-conscious control of neuroendocrine circuits that are known to control food intake. To further elucidate endocrine gut-brain communication as a component of such circuitry, we here analyzed long-term and acute effects of the gastrointestinal hormones ghrelin and PYY 3-36 as well as their hypothalamic neuropeptide targets NPY, AgRP and POMC (alpha-MSH), on locomotor activity and home cage behaviors in rats. For the analysis of SPA, we used an automated infrared beam break activity measuring system, combined with a novel automated video-based behavior analysis system (HomeCageScan (HCS)). Chronic (one-month) peripheral infusion of ghrelin potently increased body weight and fat mass in rats. Such positive energy balance was intriguingly not due to an overall increased caloric ingestion, but was predominantly associated with a decrease in SPA. Chronic intracerebroventricular infusion (7 days) of ghrelin corroborated the decrease in SPA and suggested a centrally mediated mechanism. Central administration of AgRP and NPY increased food intake as expected. AgRP administration led to a delayed decrease in SPA, while NPY acutely (but transiently) increased SPA. Behavioral dissection using HCS corroborated the observed acute and transient increases of food intake and SPA by central NPY infusion. Acute central administration of alpha-MSH rapidly decreased food intake but did not change SPA. Central administration of the NPY receptor agonist PYY 3-36 transiently increased SPA. Our data suggest that the control of spontaneous physical activity by gut hormones or their neuropeptide targets may represent an important mechanistic component of energy balance regulation.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Ghrelina/farmacología , Hipotálamo/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Péptido YY/farmacología , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Ingestión de Alimentos/fisiología , Hipotálamo/fisiología , Masculino , Actividad Motora/fisiología , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley
7.
Gastroenterology ; 139(2): 644-52, 652.e1, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20381490

RESUMEN

BACKGROUND & AIMS: The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein with pleotropic functions, including clearance of hepatic insulin. We investigated the functions of the related protein CEACAM2, which has tissue-specific distribution (kidney, uterus, and crypt epithelia of intestinal tissues), in genetically modified mice. METHODS: Ceacam2-null mice (Cc2-/-) were generated from a 129/SvxC57BL/6J background. Female mice were assessed by hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry and body fat composition was measured. Cc2-/- mice and controls were fed as pairs, given insulin tolerance tests, and phenotypically characterized. RESULTS: Female, but not male Cc2-/- mice exhibited obesity that resulted from hyperphagia and reduced energy expenditure. Pair feeding experiments showed that hyperphagia led to peripheral insulin resistance. Insulin action was normal in liver but compromised in skeletal muscle of female Cc2-/- mice; the mice had incomplete fatty acid oxidation and impaired glucose uptake and disposal. The mechanism of hyperphagia in Cc2-/- mice is not clear, but appears to result partly from increased hyperinsulinemia-induced hypothalamic fatty acid synthase levels and activity. Hyperinsulinemia was caused by increased insulin secretion. CONCLUSIONS: In mice, CEACAM2 is expressed by the hypothalamus. Cc2-/- mice develop obesity from hyperphagia and reduced energy expenditure, indicating its role in regulating energy balance and insulin sensitivity.


Asunto(s)
Metabolismo Energético , Glicoproteínas/metabolismo , Hiperinsulinismo/metabolismo , Hiperfagia/metabolismo , Hipotálamo/metabolismo , Insulina/sangre , Obesidad/metabolismo , Factores de Edad , Animales , Glucemia/metabolismo , Composición Corporal , Calorimetría Indirecta , Moléculas de Adhesión Celular , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/metabolismo , Conducta Alimentaria , Femenino , Genotipo , Técnica de Clampeo de la Glucosa , Glicoproteínas/deficiencia , Glicoproteínas/genética , Homeostasis , Hiperinsulinismo/genética , Hiperinsulinismo/fisiopatología , Hiperfagia/genética , Hiperfagia/fisiopatología , Hipotálamo/fisiopatología , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/fisiopatología , Oxidación-Reducción , Fenotipo , Factores Sexuales
8.
Am J Physiol Endocrinol Metab ; 295(1): E78-84, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18460598

RESUMEN

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol x kg(-1) x day(-1) using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.


Asunto(s)
Caquexia/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Ghrelina/farmacología , Receptores de Ghrelina/agonistas , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Caquexia/metabolismo , Ingestión de Energía/efectos de los fármacos , Ghrelina/análogos & derivados , Ghrelina/sangre , Humanos , Inyecciones Subcutáneas , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
9.
Endocrinology ; 148(1): 21-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17008393

RESUMEN

Ghrelin stimulates food intake and adiposity and thereby increases body weight (BW) in rodents after central as well as peripheral administration. Recently, it was discovered that the gene precursor of ghrelin encoded another secreted and bioactive peptide named obestatin. First reports appeared to demonstrate that this peptide requires an amidation for its biological activity and acts through the orphan receptor, GPR-39. Obestatin was shown to have actions opposite to ghrelin on food intake, BW, and gastric emptying. In the present study, we failed to observe any effect of obestatin on food intake, BW, body composition, energy expenditure, locomotor activity, respiratory quotient, or hypothalamic neuropeptides involved in energy balance regulation. In agreement with the first report, we were unable to find any effect of obestatin on GH secretion in vivo. Moreover, we were unable to find mRNA expression of GPR-39, the putative obestatin receptor, in the hypothalamus of rats. Therefore, the results presented here do not support a role of the obestatin/GPR-39 system in the regulation of energy balance.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Hormona del Crecimiento/metabolismo , Hipotálamo/efectos de los fármacos , Hormonas Peptídicas/farmacología , Animales , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Ghrelina , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Hormonas Peptídicas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vagotomía , Aumento de Peso/efectos de los fármacos , Aumento de Peso/fisiología
10.
Cell Metab ; 4(4): 257-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17011496

RESUMEN

Every evening, as we get ready for dinner, in addition to the routine behaviors of preparing the meal itself, we also prepare our bodies to cope with the upcoming meal. This could take the form of making restaurant reservations, changing into appropriate attire, washing hands, priming ourselves with an aperitif, or even consciously avoiding snacks as the meal approaches. A study by Johnstone and colleagues in this issue of Cell Metabolism (Johnstone et al., 2006) provides evidence that in parallel to our learned preparatory behaviors, our central nervous system is going through comparable motions as it gets ready for the anticipated meal.


Asunto(s)
Encéfalo/metabolismo , Animales , Encéfalo/ultraestructura , Tronco Encefálico/metabolismo , Tronco Encefálico/ultraestructura , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/ultraestructura , Ingestión de Alimentos/fisiología , Humanos , Hipotálamo/metabolismo , Hipotálamo/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Proteínas Proto-Oncogénicas c-fos/genética , Factores de Tiempo
11.
J Clin Invest ; 116(7): 1983-93, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16767221

RESUMEN

Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage-promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase alpha, fatty acid synthase, and stearoyl-CoA desaturase-1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase-1alpha, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Encéfalo/metabolismo , Hormonas Peptídicas/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adipocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Encéfalo/anatomía & histología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ghrelina , Glucosa/metabolismo , Homeostasis , Canales Iónicos , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Hormonas Peptídicas/administración & dosificación , Hormonas Peptídicas/genética , Ratas , Ratas Wistar , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3
12.
Eur J Endocrinol ; 153(3): R1-5, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16131594

RESUMEN

OBJECTIVE: Several hormones expressed in white adipose tissue influence food intake at the central level. We sought to determine whether resistin, a circulating adipose-derived hormone in rodents, has actions on the hypothalamus by determining the effects of central resistin injection on food intake and on hypothalamic Fos protein expression. DESIGN: As resistin expression in adipose tissue is influenced by altered nutritional status, we studied the effect of central resistin in both fed and pre-fasted rats. RESULTS: In fasted rats, central injection of resistin decreased food intake acutely and increased the number of cells that express Fos protein in the arcuate nucleus but not in any other hypothalamic structure. The effect on food intake was dose-dependent and did not result in the formation of a conditioned taste aversion. CONCLUSIONS: Taken together, these results provide the first evidence documenting a central action of resistin, which could be involved in a feedback loop targeting the hypothalamus. On the other hand, since we observed resistin mRNA in the arcuate and ventromedial nuclei of the hypothalamus, it is also possible that brain-derived resistin serves as a neuropeptide involved in the regulation of energy homeostasis. However, since resistin-induced satiety was modest and transient, as central administration for several days did not affect body weight, the physiological relevance and therapeutic potential of the observed principal phenomenon may be limited.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Hormonas Ectópicas/farmacología , Hipotálamo/efectos de los fármacos , Respuesta de Saciedad/efectos de los fármacos , Adiponectina , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Inyecciones Intraventriculares , Insulina/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Leptina/sangre , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , Ratas , Resistina , Respuesta de Saciedad/fisiología , Estadísticas no Paramétricas , Gusto/fisiología
13.
Am J Physiol Regul Integr Comp Physiol ; 289(3): R729-37, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15879057

RESUMEN

Oleoylethanolamide (OEA), a lipid synthesized in the intestine, reduces food intake and stimulates lipolysis through peroxisome proliferator-activated receptor-alpha. OEA also activates transient receptor potential vanilloid type 1 (TRPV1) in vitro. Because the anorexigenic effect of OEA is associated with delayed feeding onset and reduced locomotion, we examined whether intraperitoneal administration of OEA results in nonspecific behavioral effects that contribute to the anorexia in rats. Moreover, we determined whether circulating levels of other gut hormones are modulated by OEA and whether CCK is involved in OEA-induced anorexia. Our results indicate that OEA reduces food intake without causing a conditioned taste aversion or reducing sodium appetite. It also failed to induce a conditioned place aversion. However, OEA induced changes in posture and reduced spontaneous activity in the open field. This likely underlies the reduced heat expenditure and sodium consumption observed after OEA injection, which disappeared within 1 h. The effects of OEA on motor activity were similar to those of the TRPV1 agonist capsaicin and were also observed with the peroxisome proliferator-activated receptor-alpha agonist Wy-14643. Plasma levels of ghrelin, peptide YY, glucagon-like peptide 1, and apolipoprotein A-IV were not changed by OEA. Finally, antagonism of CCK-1 receptors did not affect OEA-induced anorexia. These results suggest that OEA suppresses feeding without causing visceral illness and that neither ghrelin, peptide YY, glucagon-like peptide 1, apolipoprotein A-IV, nor CCK plays a critical role in this effect. Despite that OEA-induced anorexia is unlikely to be due to impaired motor activity, our data raise a cautionary note in how specific behavioral and metabolic effects of OEA should be interpreted.


Asunto(s)
Conducta Alimentaria/efectos de los fármacos , Imidazoles/farmacología , Actividad Motora/efectos de los fármacos , Animales , Apetito/efectos de los fármacos , Reacción de Prevención/efectos de los fármacos , Capsaicina/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Calor , Vivienda para Animales , Imidazoles/administración & dosificación , Inyecciones Intraperitoneales , Masculino , Proglumida/análogos & derivados , Proglumida/farmacología , Pirimidinas/farmacología , Ratas , Ratas Long-Evans , Sodio , Percepción Espacial , Gusto
14.
J Nutr ; 135(5): 1314-9, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15867332

RESUMEN

Obesity represents one of the most urgent global health threats as well as one of the leading causes of death throughout industrialized nations. Efficacious and safe therapies remain at large. Attempts to decrease fat mass via pharmacological reduction of energy intake have had limited potency or intolerable side effects. Increasingly widespread sedentary lifestyle is often cited as a major contributor to the increasing prevalence of obesity. Moreover, low levels of spontaneous physical activity (SPA) are a major predictor of fat mass accumulation during overfeeding in humans, pointing to a substantial role for SPA in the control of energy balance. Despite this, very little is known about the molecular mechanisms by which SPA is regulated. The overview will attempt to summarize available information on neuroendocrine factors regulating SPA.


Asunto(s)
Metabolismo Energético , Actividad Motora/fisiología , Sistemas Neurosecretores/fisiología , Obesidad/fisiopatología , Hormonas Peptídicas/fisiología , Animales , Ghrelina , Homeostasis , Humanos , Obesidad/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA