Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Exp Bot ; 74(11): 3345-3360, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36861318

RESUMEN

As sulfur is part of many essential protein cofactors such as iron-sulfur clusters, molybdenum cofactors, or lipoic acid, its mobilization from cysteine represents a fundamental process. The abstraction of the sulfur atom from cysteine is catalysed by highly conserved pyridoxal 5'-phosphate-dependent enzymes called cysteine desulfurases. The desulfuration of cysteine leads to the formation of a persulfide group on a conserved catalytic cysteine and the concomitant release of alanine. Sulfur is then transferred from cysteine desulfurases to different targets. Numerous studies have focused on cysteine desulfurases as sulfur-extracting enzymes for iron-sulfur cluster synthesis in mitochondria and chloroplasts but also for molybdenum cofactor sulfuration in the cytosol. Despite this, knowledge about the involvement of cysteine desulfurases in other pathways is quite rudimentary, particularly in photosynthetic organisms. In this review, we summarize current understanding of the different groups of cysteine desulfurases and their characteristics in terms of primary sequence, protein domain architecture, and subcellular localization. In addition, we review the roles of cysteine desulfurases in different fundamental pathways and highlight the gaps in our knowledge to encourage future work on unresolved issues especially in photosynthetic organisms.


Asunto(s)
Cisteína , Proteínas Hierro-Azufre , Cisteína/metabolismo , Liasas de Carbono-Azufre/metabolismo , Fosfato de Piridoxal/metabolismo , Azufre/metabolismo , Hierro/metabolismo
2.
J Biol Chem ; 298(4): 101749, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35189141

RESUMEN

The biosynthesis of many sulfur-containing molecules depends on cysteine as a sulfur source. Both the cysteine desulfurase (CD) and rhodanese (Rhd) domain-containing protein families participate in the trafficking of sulfur for various metabolic pathways in bacteria and human, but their connection is not yet described in plants. The existence of natural chimeric proteins containing both CD and Rhd domains in specific bacterial genera, however, suggests a general interaction between these proteins. We report here the biochemical relationships between two cytosolic proteins from Arabidopsis thaliana, a Rhd domain-containing protein, the sulfurtransferase 18 (STR18), and a CD isoform referred to as ABA3, and compare these biochemical features to those of a natural CD-Rhd fusion protein from the bacterium Pseudorhodoferax sp. We observed that the bacterial enzyme is bifunctional exhibiting both CD and STR activities using l-cysteine and thiosulfate as sulfur donors but preferentially using l-cysteine to catalyze transpersulfidation reactions. In vitro activity assays and mass spectrometry analyses revealed that STR18 stimulates the CD activity of ABA3 by reducing the intermediate persulfide on its catalytic cysteine, thereby accelerating the overall transfer reaction. We also show that both proteins interact in planta and form an efficient sulfur relay system, whereby STR18 catalyzes transpersulfidation reactions from ABA3 to the model acceptor protein roGFP2. In conclusion, the ABA3-STR18 couple likely represents an uncharacterized pathway of sulfur trafficking in the cytosol of plant cells, independent of ABA3 function in molybdenum cofactor maturation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Azufre , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Liasas de Carbono-Azufre , Cisteína/metabolismo , Citosol/metabolismo , Dominios Proteicos , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Tiosulfato Azufretransferasa/genética , Tiosulfato Azufretransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA