Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 14(1): 4092, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433777

RESUMEN

Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.


Asunto(s)
Cisteína Endopeptidasas , Complejo de la Endopetidasa Proteasomal , Proteostasis , Humanos , Citoplasma , Mitocondrias , Factor 1 de Elongación Peptídica , Cisteína Endopeptidasas/metabolismo
2.
Mol Biol Cell ; 33(4): ar29, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080992

RESUMEN

Assembly of the dimeric complex III (CIII2) in the mitochondrial inner membrane is an intricate process in which several accessory proteins are involved as assembly factors. Despite numerous studies, this process has yet to be fully understood. Here we report the identification of human OCIAD2 (ovarian carcinoma immunoreactive antigen-like protein 2) as an assembly factor for CIII2. OCIAD2 was found to be deregulated in several carcinomas and also in some neurogenerative disorders; however, its nonpathological role had not been elucidated.  We have shown that OCIAD2 localizes to mitochondria and interacts with electron transport chain (ETC) proteins. Complete loss of OCIAD2 using gene editing in HEK293 cells resulted in abnormal mitochondrial morphology, a substantial decrease of both CIII2 and supercomplex III2+IV, and a reduction in CIII enzymatic activity. Identification of OCIAD2 as a protein required for assembly of functional CIII2 provides a new insight into the biogenesis and architecture of the ETC. Elucidating the mechanism of OCIAD2 action is important both for the understanding of cellular metabolism and for an understanding of its role in malignant transformation.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Carcinoma/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo
3.
Pharmacol Res ; 163: 105248, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065283

RESUMEN

The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.


Asunto(s)
Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Péptidos/metabolismo
4.
J Mol Biol ; 432(7): 2067-2079, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32061935

RESUMEN

The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6, are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential-driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulfide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Cobre/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Compuestos de Sulfhidrilo/química , Proteínas Portadoras/genética , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Células HEK293 , Humanos , Metalochaperonas , Mitocondrias/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación , Transporte de Proteínas
5.
J Cell Sci ; 132(8)2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028152

RESUMEN

The production of newly synthesized proteins is vital for all cellular functions and is a determinant of cell growth and proliferation. The synthesis of polypeptide chains from mRNA molecules requires sophisticated machineries and mechanisms that need to be tightly regulated, and adjustable to current needs of the cell. Failures in the regulation of translation contribute to the loss of protein homeostasis, which can have deleterious effects on cellular function and organismal health. Unsurprisingly, the regulation of translation appears to be a crucial element in stress response mechanisms. This review provides an overview of mechanisms that modulate cytosolic protein synthesis upon cellular stress, with a focus on the attenuation of translation in response to mitochondrial stress. We then highlight links between mitochondrion-derived reactive oxygen species and the attenuation of reversible cytosolic translation through the oxidation of ribosomal proteins at their cysteine residues. We also discuss emerging concepts of how cellular mechanisms to stress are adapted, including the existence of alternative ribosomes and stress granules, and the regulation of co-translational import upon organelle stress.


Asunto(s)
Mitocondrias/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Procesos de Crecimiento Celular , Cisteína/metabolismo , Humanos , Mitocondrias/genética , Estrés Oxidativo , Proteostasis , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Transducción de Señal
6.
PLoS Genet ; 14(11): e1007743, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30457989

RESUMEN

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.

7.
Nat Commun ; 9(1): 4028, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279421

RESUMEN

The presequence translocase of the mitochondrial inner membrane (TIM23 complex) facilitates anterograde precursor transport into the matrix and lateral release of precursors with stop-transfer signal into the membrane (sorting). Sorting requires precursor exit from the translocation channel into the lipid phase through the lateral gate of the TIM23 complex. How the two transport modes are regulated and balanced against each other is unknown. Here we show that the import motor J-protein Pam18, which is essential for matrix import, controls lateral protein release into the lipid bilayer. Constitutively translocase-associated Pam18 obstructs lateral precursor transport. Concomitantly, Mgr2, implicated in precursor quality control, is displaced from the translocase. We conclude that during motor-dependent matrix protein transport, the transmembrane segment of Pam18 closes the lateral gate to promote anterograde polypeptide movement. This finding explains why a motor-free form of the translocase facilitates the lateral movement of precursors with a stop-transfer signal.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Levaduras
8.
BMC Biol ; 16(1): 66, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29929515

RESUMEN

BACKGROUND: The proteome of mitochondria comprises mostly proteins that originate as precursors in the cytosol. Before import into the organelle, such proteins are exposed to cytosolic quality control mechanisms. Multiple lines of evidence indicate a significant contribution of the major cytosolic protein degradation machinery, the ubiquitin-proteasome system, to the quality control of mitochondrial proteins. Proteins that are directed to the mitochondrial intermembrane space (IMS) exemplify an entire class of mitochondrial proteins regulated by proteasomal degradation. However, little is known about how these proteins are selected for degradation. RESULTS: The present study revealed the heterogeneous cytosolic stability of IMS proteins. Using a screening approach, we found that different cytosolic factors are responsible for the degradation of specific IMS proteins, with no single common factor involved in the degradation of all IMS proteins. We found that the Cox12 protein is rapidly degraded when localized to the cytosol, thus providing a sensitive experimental model. Using Cox12, we found that lysine residues but not conserved cysteine residues are among the degron features important for protein ubiquitination. We observed the redundancy of ubiquitination components, with significant roles of Ubc4 E2 ubiquitin-conjugating enzyme and Rsp5 E3 ubiquitin ligase. The amount of ubiquitinated Cox12 was inversely related to mitochondrial import efficiency. Importantly, we found that precursor protein ubiquitination blocks its import into mitochondria. CONCLUSIONS: The present study confirms the involvement of ubiquitin-proteasome system in the quality control of mitochondrial IMS proteins in the cytosol. Notably, ubiquitination of IMS proteins prohibits their import into mitochondria. Therefore, ubiquitination directly affects the availability of precursor proteins for organelle biogenesis. Importantly, despite their structural similarities, IMS proteins are not selected for degradation in a uniform way. Instead, specific IMS proteins rely on discrete components of the ubiquitination machinery to mediate their clearance by the proteasome.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal , Proteolisis , Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación
9.
Nat Commun ; 9(1): 324, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358734

RESUMEN

The generation of reactive oxygen species (ROS) is inevitably linked to life. However, the precise role of ROS in signalling and specific targets is largely unknown. We perform a global proteomic analysis to delineate the yeast redoxome to a depth of more than 4,300 unique cysteine residues in over 2,200 proteins. Mapping of redox-active thiols in proteins exposed to exogenous or endogenous mitochondria-derived oxidative stress reveals ROS-sensitive sites in several components of the translation apparatus. Mitochondria are the major source of cellular ROS. We demonstrate that increased levels of intracellular ROS caused by dysfunctional mitochondria serve as a signal to attenuate global protein synthesis. Hence, we propose a universal mechanism that controls protein synthesis by inducing reversible changes in the translation machinery upon modulating the redox status of proteins involved in translation. This crosstalk between mitochondria and protein synthesis may have an important contribution to pathologies caused by dysfunctional mitochondria.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Línea Celular , Células HEK293 , Humanos , Oxidación-Reducción , Proteínas Ribosómicas/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/química
10.
Nucleic Acids Res ; 43(11): 5451-64, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25956655

RESUMEN

APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Línea Celular Tumoral , Cisteína/química , Daño del ADN , Reparación del ADN , ADN Mitocondrial/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Disulfuros/química , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Estabilidad Proteica , Transporte de Proteínas
11.
FEBS Lett ; 588(15): 2484-95, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24866464

RESUMEN

Mitochondria are involved in many essential cellular activities. These broad functions explicate the need for the well-orchestrated biogenesis of mitochondrial proteins to avoid death and pathological consequences, both in unicellular and more complex organisms. Yeast as a model organism has been pivotal in identifying components and mechanisms that drive the transport and sorting of nuclear-encoded mitochondrial proteins. The machinery components that are involved in the import of mitochondrial proteins are generally evolutionarily conserved within the eukaryotic kingdom. However, topological and functional differences have been observed. We review the similarities and differences in mitochondrial translocases from yeast to human. Additionally, we provide a systematic overview of the contribution of mitochondrial import machineries to human pathologies, including cancer, mitochondrial diseases, and neurodegeneration.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Mitocondrias/enzimología , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades Neurodegenerativas/genética , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Mol Biol Cell ; 24(5): 543-54, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283984

RESUMEN

The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cisteína/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Oxidación-Reducción , Pliegue de Proteína , Transporte de Proteínas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell Proteomics ; 11(12): 1840-52, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22984289

RESUMEN

The intermembrane space (IMS) represents the smallest subcompartment of mitochondria. Nevertheless, it plays important roles in the transport and modification of proteins, lipids, and metal ions and in the regulation and assembly of the respiratory chain complexes. Moreover, it is involved in many redox processes and coordinates key steps in programmed cell death. A comprehensive profiling of IMS proteins has not been performed so far. We have established a method that uses the proapoptotic protein Bax to release IMS proteins from isolated mitochondria, and we profiled the protein composition of this compartment. Using stable isotope-labeled mitochondria from Saccharomyces cerevisiae, we were able to measure specific Bax-dependent protein release and distinguish between quantitatively released IMS proteins and the background efflux of matrix proteins. From the known 31 soluble IMS proteins, 29 proteins were reproducibly identified, corresponding to a coverage of >90%. In addition, we found 20 novel intermembrane space proteins, out of which 10 had not been localized to mitochondria before. Many of these novel IMS proteins have unknown functions or have been reported to play a role in redox regulation. We confirmed IMS localization for 15 proteins using in organello import, protease accessibility upon osmotic swelling, and Bax-release assays. Moreover, we identified two novel mitochondrial proteins, Ymr244c-a (Coa6) and Ybl107c (Mic23), as substrates of the MIA import pathway that have unusual cysteine motifs and found the protein phosphatase Ptc5 to be a novel substrate of the inner membrane protease (IMP). For Coa6 we discovered a role as a novel assembly factor of the cytochrome c oxidase complex. We present here the first and comprehensive proteome of IMS proteins of yeast mitochondria with 51 proteins in total. The IMS proteome will serve as a valuable source for further studies on the role of the IMS in cell life and death.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/análisis , Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Marcaje Isotópico , Transporte de Proteínas , Saccharomyces cerevisiae/fisiología , Proteína X Asociada a bcl-2/metabolismo
14.
Mol Biol Cell ; 23(20): 3948-56, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918945

RESUMEN

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport-associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of ß-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import ß-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of ß-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane ß-barrel proteins.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Proteínas Mitocondriales/química , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
15.
Mol Biol Cell ; 23(20): 3957-69, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22918950

RESUMEN

The intermembrane space of mitochondria accommodates the essential mitochondrial intermembrane space assembly (MIA) machinery that catalyzes oxidative folding of proteins. The disulfide bond formation pathway is based on a relay of reactions involving disulfide transfer from the sulfhydryl oxidase Erv1 to Mia40 and from Mia40 to substrate proteins. However, the substrates of the MIA typically contain two disulfide bonds. It was unclear what the mechanisms are that ensure that proteins are released from Mia40 in a fully oxidized form. In this work, we dissect the stage of the oxidative folding relay, in which Mia40 binds to its substrate. We identify dynamics of the Mia40-substrate intermediate complex. Our experiments performed in a native environment, both in organello and in vivo, show that Erv1 directly participates in Mia40-substrate complex dynamics by forming a ternary complex. Thus Mia40 in cooperation with Erv1 promotes the formation of two disulfide bonds in the substrate protein, ensuring the efficiency of oxidative folding in the intermembrane space of mitochondria.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Cisteína/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/metabolismo , Mutación/genética , Oxidación-Reducción , Fenotipo , Unión Proteica , Conformación Proteica , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Especificidad por Sustrato
16.
Cell ; 138(4): 628-44, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703392

RESUMEN

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Proteínas Mitocondriales/química , Señales de Clasificación de Proteína , Transporte de Proteínas
17.
Mol Biol Cell ; 19(1): 226-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17978092

RESUMEN

The mitochondrial intermembrane space contains chaperone complexes that guide hydrophobic precursor proteins through this aqueous compartment. The chaperones consist of hetero-oligomeric complexes of small Tim proteins with conserved cysteine residues. The precursors of small Tim proteins are synthesized in the cytosol. Import of the precursors requires the essential intermembrane space proteins Mia40 and Erv1 that were proposed to form a relay for disulfide formation in the precursor proteins. However, experimental evidence for a role of Mia40 and Erv1 in the oxidation of intermembrane space precursors has been lacking. We have established a system to directly monitor the oxidation of precursors during import into mitochondria and dissected distinct steps of the import process. Reduced precursors bind to Mia40 during translocation into mitochondria. Both Mia40 and Erv1 are required for formation of oxidized monomers of the precursors that subsequently assemble into oligomeric complexes. Whereas the reduced precursors can diffuse back into the cytosol, the oxidized precursors are retained in the intermembrane space. Thus, oxidation driven by Mia40 and Erv1 determines vectorial transport of the precursors into the mitochondrial intermembrane space.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína , Disulfuros/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación/genética , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
18.
J Biol Chem ; 282(31): 22472-80, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17553782

RESUMEN

The mitochondrial intermembrane space (IMS) contains an essential machinery for protein import and assembly (MIA). Biogenesis of IMS proteins involves a disulfide relay between precursor proteins, the cysteine-rich IMS protein Mia40 and the sulfhydryl oxidase Erv1. How precursor proteins are specifically directed to the IMS has remained unknown. Here we systematically analyzed the role of cysteine residues in the biogenesis of the essential IMS chaperone complex Tim9-Tim10. Although each of the four cysteines of Tim9, as well as of Tim10, is required for assembly of the chaperone complex, only the most amino-terminal cysteine residue of each precursor is critical for translocation across the outer membrane and interaction with Mia40. Mia40 selectively recognizes cysteine-containing IMS proteins in a site-specific manner in organello and in vitro. Our results indicate that Mia40 acts as a trans receptor in the biogenesis of mitochondrial IMS proteins.


Asunto(s)
Cisteína/química , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Disulfuros , Escherichia coli/metabolismo , Histidina/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Genéticos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
19.
J Mol Biol ; 365(3): 612-20, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17095012

RESUMEN

Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.


Asunto(s)
Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Mutación/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/química , Especificidad por Sustrato
20.
Science ; 312(5779): 1523-6, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16763150

RESUMEN

Transport of metabolites across the mitochondrial inner membrane is highly selective, thereby maintaining the electrochemical proton gradient that functions as the main driving force for cellular adenosine triphosphate synthesis. Mitochondria import many preproteins via the presequence translocase of the inner membrane. However, the reconstituted Tim23 protein constitutes a pore remaining mainly in its open form, a state that would be deleterious in organello. We found that the intermembrane space domain of Tim50 induced the Tim23 channel to close. Presequences overcame this effect and activated the channel for translocation. Thus, the hydrophilic cis domain of Tim50 maintains the permeability barrier of mitochondria by closing the translocation pore in a presequence-regulated manner.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Permeabilidad de la Membrana Celular , Liposomas , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Estructura Terciaria de Proteína , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA